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We examine a game-theoretic model of vessel sharing agreements in industries endowed with 
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less concentrated industry to an equilibrium with a larger global aggregate associated with a 
more concentrated industry. 
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1 Introduction

The key aspect of a vessel sharing agreement is the joint production, by its members, of a liner

transportation service of containerized cargo. The peculiarity of this joint production method

lies in the absence of compensation for the costs incurred by each member of the agreement in

producing a transportation service that is partly commercially managed by the other members of

the agreement, who are the beneficiary of the revenues resulting from the operation of that part

of the service. The fact that a vast majority (more than the 80%) of world trade takes place via

maritime transportation and that agreements of this kind have become increasingly frequent1 gives

a measure of the dimension of the phenomenon studied here.

The importance of analyzing agreements that involve the sharing of independently owned means

of production is widely recognized in economics (see, e.g., [5] and [20] as well as the subsequent

literature). Beyond a purely theoretical interest, a real reason to examine these agreements is that

they can give rise to anti-competitive effects and, in fact, some antitrust laws prohibit them, at least

in principle. For instance, vessel sharing agreements are in principle prohibited by Article 101(1)

of the Treaty on the Functioning of the European Union and they can be run only by virtue of

the “emending” Article 101(3) of that Treaty, which allows for pro-competitive agreements.2 Our

understanding of the effects of modes of production that call for the joint use of independently owned

means of production can thus have potential implications for the economy. Such understanding

cannot ignore the particular mechanism used by companies to organize joint production, which is,

in fact, at the origin of a possible change in the strategic behavior of the agents involved and of the

repercussions on society.

To make the point of our discussion as clear as possible from the beginning, it is worth to

immediately clarify the production mechanism envisaged by a vessel sharing agreement. Denoting

by B a finite and nonempty set of carriers of a vessel sharing agreement where each member

n ∈ B contributes a maximum production capacity κn ∈ R++, the typical contract underlying that

agreement stipulates that each member n ∈ B dedicates a fraction

κl∑
i∈Bκi

of its capacity κn to the transportation of containers commercially managed by the member l, for

every member l ∈ B of the agreement: the member l can thus exclusively use member n’s production

capacity up to the above specified portion and the remaining capacity cannot be used by any other

member. The cost incurred by carrier n ∈ B for the transportation of the containers commercially

managed by a member l ∈ B\{n} are not compensated by l and each member n ∈ B enjoys

exclusive rights to the revenues associated with the transportation of the containers commercially

managed by n. As is clear from this brief description, such peculiar production mechanism can

be extended in principle to any other modes of transportation that calls for the use of production

capacities, if not even—with due abstraction—to industries other than transportation.

1See, e.g., [19, p. 139].
2During the so-called CBER era—until 25th April 2024—the members of large prospective vessel sharing agree-

ments had to self-assess the pro-competitive nature of the agreement; with the end of that “era”, common European

antitrust rules and procedures apply.

1



A model of a system of vessel sharing agreements in which a game of oligopolistic competition

is associated with each possible configuration of vessel sharing agreements has been first proposed

in [17]. The mentioned article makes the point that, since the transportation of containers can be

understood as a homogeneous good (more correctly, as a homogeneous service) and since firms’ legal

identities are kept separate, carriers’ revenues should be modelled as in the usual Cournot oligopoly:

the revenue of each carrier thus depends on the sum of the quantities of transportation service

supplied to the market by all carriers of the industry. Also, and importantly, that same article makes

the point that the cost function of each carrier depends on a fraction of the sum of the quantities

of transportation service supplied to the market by all carriers of a vessel sharing agreement.3 As

a result, in the case of a degenerate configuration of vessel sharing agreements (namely, the vessel

sharing agreements formed by only one carrier) the associated game of oligopolistic competition is

the usual Cournot game, but in all other cases the associated game is structurally dissimilar from it.

For the games generated by a system of vessel sharing agreements, [17] has examined the equilibrium

structure and provided a comparative statics analysis unfolding the pro-competitive effects of the

formation and expansion of vessel sharing agreements. More precisely, under the assumption of

strict concavity of the revenue function and of the linearity of variable cost functions, the mentioned

article has proved that every game generated by a system has a unique Nash equilibrium and that

the enlargement of vessel sharing agreements yields a decrease in the unique price equilibrium and,

consequently, an increase in consumer welfare.

In the present contribution we generalize the investigation in [17] both on the demand side,

by admitting a general class of price functions (which properly subsumes that considered in the

mentioned article), and on the supply side, by admitting strictly increasing and convex (but possibly

nonlinear) variable cost functions. Dealing with such generalization provides a new contribution,

from both a game-theoretic and mathematical viewpoint and from an economic viewpoint, by not

only responding to the need to carry an analysis based on hypotheses on the most general primitives

but also, especially on the supply side, to remove assumptions that are not necessarily plausible.

In particular, the linearity of costs may conflict with the heterogeneity of the productive efficiency

of the various ships of the fleet of a carrier. Even when we assume that each vessel operates under

linear and strictly increasing variable costs, in the presence of a fleet composed of multiple vessels

with different linear variable costs, a simple microeconomic optimization exercise leads to variable

costs for the carrier that are piecewise linear, convex, and strictly increasing. It must be conceded

that the heterogeneity of the productive efficiency of the various ships of the fleet of a carrier is

commonplace in the container shipping industry and hence that the assumption of linearity of

variable cost functions is in fact restrictive and unrealistic.

From a game-theoretic and mathematical viewpoint, the relaxation of the cost linearity as-

3A point already clarified in [17] is that the formation of a vessel sharing agreement does not alter the variable

cost function of its members (even though the mechanism alters the argument of that function): the simple reason

for this is that such agreements do not alter a member’s fleet. To the contrary, the fixed costs of providing a liner

service are altered by the formation of vessel sharing agreements and a good part of the incentives for its members

to sign the underlying contract might in fact arise from a decrease in fixed costs. Examining the members’ incentives

to form a vessel sharing agreement is not the object of this paper and hence, for the present analysis, the changes

in fixed costs are just immaterial. For this reason we do not need to (and we will not) make any assumption about

fixed costs.
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sumption drastically changes the structure of the games studied. It is not difficult to check—if

needed, see Remark 3—that the games considered here, as well as those in [17], are not typically

aggregative games in the general sense of [1, Definition 1] as well as in the sense of [6] or of [7]. The

main structural difference between the games examined in [17] and those considered here is that,

by virtue of cost linearity, in the games examined in [17] the partial derivative of a player’s utility

function with respect to the player’s strategic variable is equivalent to that of a player of a Cournot

game and hence of an aggregative game. The analysis in [17] relies on the observation that, under

certain assumptions on the (pseudo-)concavity of players’ utility function in their own strategic

variables, only the partial derivatives are what really matters and what actually determines the

structure of the set of equilibria. Lato sensu, the games of vessel sharing agreements with linear

costs considered in [17] are “almost smooth aggregative games” in the sense of [10, Definition 1]

although, stricto sensu, a comparison is not possible because of some assumptions introduced by

those authors in the definition of an almost smooth aggregative game.4 The above observation is

no longer valid when the linearity of variable cost functions is relaxed in that the structure of the

resulting games cannot be assimilated to that of an almost smooth aggregative game, not even

lato sensu. One of the contributions of the present paper is in fact providing a technique to deal

with equilibrium uniqueness and to provide comparative statics when the games of vessel sharing

agreements cannot be reduced to (almost smooth) aggregative games. Also, the present research

might provide a stimulus for considering more general notions of an aggregative game.5

From an economic viewpoint, the present work confirms and partly extends to the case of convex

variable cost functions the main economic conclusions in [17], where the formation and expansion

of vessel sharing agreements is proved to have pro-competitive effects under the assumption of cost

linearity. More precisely, the present work shows that the mentioned conclusions can be generalized

only up to a certain degree of convexity of variable cost functions and that, in industries with

“highly” convex variable cost functions, the formation and expansion of vessel sharing agreements

can actually harm consumers. This indicates that the heterogeneity of firms’ production efficiency

may constitute a structural cause of non-competitive effect.

The rest of the article is organized as follows. Section 2 formally presents the fundamental

structures needed to model a system of vessel sharing agreements and of a game associated with

it. Section 3 deals with various definitions derived from that of a price function and recalls a

notion of generalized convexity. Relying on those definitions, Section 4 introduces the main object

of our analysis—convex systems of vessel sharing agreements—and discusses other conditions that

a system of vessel sharing agreements might or might not satisfy. Section 5 contains the core

findings of the paper: it investigates the uniqueness of the equilibrium aggregate, the equilibrium

uniqueness, the positivity of equilibria in convex VSA-systems and examines the implications of

the increase of concentration of a VSA-configuration on the variation in consumer welfare. The

4A similar nomenclature is used also in [15] and in other papers, but with a more traditional and restrictive

meaning.
5We can’t prove or disprove that the games examined here are generalized quasi-aggregative games in the sense of

[11, Definition 2]: see also Observation II in [18] for a simple characterization thereof. Probably, to encompass the

class of games considered here one needs at least two distinct interaction systems in the sense of the last-mentioned

article and a more general definition of an aggregative game is in fact needed.
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analysis is supplemented by examples illustrating the impossibility to drop specific assumptions.

Section 6 concludes. A final Appendix 7 discusses a general condition on price functions (Appendix

7.1) and contains the fundamental theorems underlying the main results of this paper (Appendix

7.2).

2 Vessel sharing agreements

2.1 Container shipping industries

A container shipping industry, henceforth abbreviated CSI for short, is modelled as an oligopoly

in which a set of carriers compete in the offer of a liner service for the transport of containers, here

understood as a single homogeneous commodity. Each carrier has a maximum capacity (i.e., a

cap to the volume of containers that such an operator can transport) and faces both a fixed cost

of operating a liner service (i.e., the pure cost of operating a liner service independently of the

quantity of containers transported) and a variable cost (which instead depends on the quantity of

containers transported only). A container shipping industry is formally defined as follows.

Definition 1 A CSI is a triple I = (N, p, {Sn, ϕn, vn}n∈N ) with

• a set N = {1, . . . , n̄} is of n̄ ≥ 2 carriers,

• a price function p : R+ → R

• a capacity Sn = [0, κn] ⊆ R with a cap κn > 0 for each n ∈ N ;

• a variable cost function vn : Sn → R for each n ∈ N ;

• a stand-alone fixed cost ϕn ∈ R for each n ∈ N .

2.2 VSA-configurations

A VSA-configuration is a structure of vessel sharing agreements within a CSI. As vessel sharing

agreements usually contain some exclusivity clauses, it is natural to model a VSA-configuration as

a partitions of the set N of carriers and to interpret a block of that partition as a set of carriers

that have jointly signed a vessel sharing agreement. A block of a VSA-configuration will be also

alternatively called a VSA (namely, a vessel sharing agreement). A singleton in a VSA-configuration

is viewed as a degenerate VSA.

Definition 2 Let N = {1, . . . , n̄} be a set of carriers. The set of all VSA-configurations for

N is set

N

of all partitions of N . A partition C of N is called a VSA-configuration and a block in C is

called a VSA: when C is a singleton we speak of a degenerate VSA (otherwise, we speak of a

non-degenerate VSA) and when C is neither a singleton nor the entire set of carriers we speak of
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a proper VSA (otherwise, we speak of a non-proper VSA). For each VSA-configuration C ∈ N
we denote by

BC
n

the VSA—i.e., the block in C—to which carrier n belongs under C. For each carrier n ∈ N and

for each VSA-configuration C ∈ N , the measure of block-internal weight of n relative to C

is the real number µC
n defined by

µC
n =

κn∑
l∈BC

n
κl
. (1)

Example 1 clarifies the notation adopted by presenting a specific VSA-configuration and a

specific VSA and by computing the measure of block-internal weight of a specific carrier of that

VSA relative to that VSA-configuration.

Example 1 Let N = {1, 2, 3, 4, 5, 6, 7, 8, 9} be a set of carriers. The partition

C = {{1, 9}, {2}, {3, 4, 6}, {5, 7}, {8}}

is one of the many possible VSA-configurations in N ; the block {3, 4, 6} is one of the five VSAs in

C; the VSA to which carrier 4 belongs under C is the block BC
4 = {3, 4, 6}. Supposing that κ3 = 15,

κ4 = 30, κ6 = 55, then µC
4 = 3/10 as

µC
4 =

30

15 + 30 + 55
.

2.3 A measure of concentration

Many measures of concentration used in industrial organization theory (like, e.g., the Herfindahl

index) are real-valued functions that endow N with a total preorder. The “more concentrated

than” used in [17] endow N with a partial order and allows for the pairwise incomparability of

VSA-configurations.

Definition 3 Let N = {1, . . . , n̄} be a set of carriers and let (C◦, C•) be a pair of VSA-configurations

in N . We say that C• is more concentrated than C◦ iff each VSA in C◦ is contained in some

VSA in C• and we write C◦ ⊑ C•.

The pair (N ,⊑) is known to be a bounded partial order relation on N and hence a reflexive,

transitive and antisymmetric binary relation on N with a greatest element and a least element.

Definition 4 Let N = {1, . . . , n̄} be a set of carriers. The VSA-configuration

{{1, . . . , n̄}}

is the greatest element of the partially ordered set (N ,⊑). The VSA-configuration

{{1}, . . . , {n̄}}

is the least element of the partially ordered set (N ,⊑) and is henceforth called the Cournot VSA-

configuration.
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In general, the binary relation ⊑ is not a total order and two VSA-configurations might well be

incomparable through ⊑. Example 2 illustrates the point.

Example 2 Let N = {1, 2, 3, 4, 5, 6, 7, 8, 9} be a set of carriers and consider the VSA-configurations

C◦ = {{1, 4}, {2, 6, 7}, {3}, {5, 8}, {9}}, C• = {{1, 4, 9}, {3}, {2, 5, 6, 7, 8}}

and

C∗ = {{1, 3, 4, 9}, {2, 5, 6, 7}, {8}}

in N . The VSA-configuration C• is more concentrated than C◦. However, neither C• is more

concentrated than C∗ nor C∗ is more concentrated than C•.

2.4 VSA-system

Given a CSI, we can get a formal description of a VSA-system by specifying how a carrier’s fixed

and variable costs depend on all possible VSA-configurations.

Definition 5 A VSA-system Σ is a pair (I,Φ) where I is a CSI specified as in Definition 1 and

where Φ is a set

{ϕC
n }(n,C)∈N×N

of configuration-dependent fixed costs such that for all n ∈ N :

• ϕC
n ∈ R for all C ∈ N ;

• ϕ
{{1},...,{n̄}}
n = ϕn.

Remark 1 The hypothesis that ϕ
{{1},...,{n̄}}
n = ϕn for all n ∈ N is just a consistency condition but

is immaterial for the validity of the results of this paper.

2.5 Operation and profits in a VSA-system

Consider a VSA-system Σ = (I,Φ) and suppose that its carriers commercially produce a vector

(s1, . . . , sn̄) of quantities of transportation service. The VSA-configuration of the CSI-industry I

of that system is immaterial as to the revenue of a carrier, say n, in N : such a revenue is

p(
∑

l∈Nsl) · sn

no matter what fraction of sn commercially managed (namely, commercially produced) by a carrier

n is operated (namely, transported) by other carriers of the industry. VSA-configurations—and

the way they discipline how quantities are operated by carriers—are instead important in the

specification of costs. About fixed costs we have merely assumed that they are real numbers and

we only have imposed a reasonable consistency condition: other reasonable assumptions might be

reasonably imposed but they are just immaterial for the analysis conducted here. The specification

of variable costs—which is instead crucial to the understanding of how vessel sharing agreements
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work—needs a longer explanation.6 Now, suppose a VSA-configuration C inN is formed. Assuming

a homogeneous distribution of production over time,7 the vessel sharing agreement signed by carrier

n implies that the aggregate quantity of transport service∑
l∈BC

n
sl

commercially managed by the members of BC
n is operated by each of them proportionally to the

quantity of capacity contributed to that VSA (namely, proportionally to BC
n ): such a proportion

is the real number µC
n specified in (1). Therefore, the quantity operated by carrier n is

µC
n ·

∑
l∈BC

n
sl (2)

and hence the associated variable cost of carrier n is

vn(µ
C
n ·

∑
l∈BC

n
sl).

It is noted that vessel sharing agreements do not involve a change of property of the ships owned

by n and hence they do not entail a change in the technology—and hence in the variable cost

function—of carrier n, which continues to face a variable cost function vn. Carrier n’s total cost is

thus

ϕC
n + vn(µ

C
n ·

∑
l∈BC

n
sl)

and, consequently, carrier n’s configuration-dependent profit is

p(
∑

l∈Nsl) · sn − ϕC
n − vn(µ

C
n ·

∑
l∈BC

n
sl). (3)

Remark 2 Consider a VSA-system Σ = (I,Φ). It is explicitly remarked that, for all n ∈ N , the

quantity operated by carrier n specified in (2) satisfies the inequalities 0 ≤ µC
n ·

∑
l∈BC

n
sl ≤ κn and

that each carrier i ∈ BC
n operates the fraction

κi∑
l∈BC

n
κl

of quantity sn commercially managed by the carrier n ∈ BC
n and hence that

0 ≤ κi∑
l∈BC

n
κl

· sn ≤ κi

and ∑
i∈BC

n

κi∑
l∈BC

n
κl

· sn = sn.

This remark clarifies that the accounting of the quantities operated and commercially managed by

carriers is consistent. It is observed, also, that when C is the Cournot configuration—put differently,

when BC
l = {l} for all l ∈ N—carrier n’s profit can be expressed by p(

∑
l∈Nsl) · sn − ϕn − vn(sn)

in that µC
n = 1 and carrier n’s profit coincides with the usual specification of the profit of a firm

of a Cournot oligopoly when C is the Cournot configuration. A VSA-system is thus a proper

generalization of a Cournot oligopoly.

6See also [17] for a discussion on variable costs.
7See again, Sections 2 and 4.2 in [17] for a discussion of this assumption.
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Example 3 illustrates, numerically, the difference between the quantity of liner service commer-

cially managed by a carrier in a VSA and that operated by a carrier in a VSA.

Example 3 Consider a VSA-system (I,Φ) with N = {1, 2, 3, 4, 5, 6} and

Sn = [0, 10 · n]

for all n ∈ N and consider a VSA-configuration

C = {{1, 2, 3}, {4, 6}, {5}}

for Σ. Then

(µC
1 , µ

C
2 , µ

C
3 ) = (1/6, 1/3, 1/2).

Assume that each carrier n commercially produces a vector s = (s1, . . . , s6) of quantities of trans-

portation service with sn = 2 · n+ 6 for all n ∈ N . Then

(s1, s2, s3) = (8, 10, 12)

and hence the quantity of liner service commercially managed by carrier 1 (respectively, 2 and 3)

is 8 (respectively, 10 and 12). The generic entry Aij of the 3× 3 square matrix A specified by

A =

1
6 · 8 1

6 · 10 1
6 · 12

1
3 · 8 1

3 · 10 1
3 · 12

1
2 · 8 1

2 · 10 1
2 · 12


is the quantity operated—namely, transported—by carrier i of liner service commercially managed—

namely, commercially produced—by carrier j. It is readily verified that∑3
j=1Aij = µC

i ·
∑

l∈BC
i
sl for all i ∈ {1, 2, 3}

and so
∑3

j=1Aij is the quantity µC
i ·

∑
l∈BC

i
sl operated—namely, transported—by carrier i ∈ {1, 2, 3}

according to the vessel sharing agreement. Likewise, it is readily verified that∑3
i=1Aij = sj for all j ∈ {1, 2, 3}

and so
∑3

i=1Aij is the quantity sj commercially managed—namely, commercially produced—by

carrier j ∈ {1, 2, 3}.

2.6 VSA-games and equilibria

A game G is a triple (N, {Sn}n∈N , {un}n∈N ) where: N = {1, . . . , n̄} is a finite set with n̄ ≥ 2

players; Sn is a nonempty set of player n’s strategies; player n’s utility function un is a real-valued

function on the joint strategy set

S =
∏

l∈NSl.

Given a game G and a pair (n, s) ∈ N × S, we put s−n = (sl)l∈N\{n} and

S−n =
∏

l∈N\{n}Sl,
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we denote the joint strategy s by (sn, s−n) and we call player n’s conditional utility function on

s−n the function un(·, s−n) : Sn → R specified by

un(·, s−n)(sn) = un(sn, s−n).

A Nash equilibrium for a game G is a joint strategy e ∈ S satisfying the implication sn ∈ Sn ⇒
un (e) ≥ un(sn, e−n) for all n ∈ N . When strategy sets are subsets of R, the sum e1+ . . .+ en̄ of all

components of a Nash equilibrium e for G is sometimes called an equilibrium aggregate. Recalled

the basic definitions of a game and of a Nash equilibrium, we associate a game of oligopolistic

competition to each possible VSA-configuration. The associated game—where utility functions are

specified by the configuration-dependent profit obtained in (3)—will be called a VSA-game.

Definition 6 Let Σ be a VSA-system specified as in Definition 5. For each VSA-configuration C

in N , the VSA-game associated to C under Σ is the game

(N, {Sn}n∈N , {uCn }n∈N )

where N is the set of carriers and, for all n ∈ N , player n’s strategy set Sn is carrier n’s capacity

and player n’s utility function uCn is the real-valued function on the joint strategy set S specified by

uCn (s) = p(
∑

l∈Nsl) · sn − ϕC
n − vn(µ

C
n ·

∑
l∈BC

n
sl).

The utility function uCn is also called carrier n’s configuration-dependent profit function.

Remark 3 clarifies the connection with [1, Definition 1]’s aggregative games.

Remark 3 Consider a VSA-system and a VSA-configuration C with a proper VSA containing a

carrier n. Consider the profit function uCn specified as in Definition 6. Assume that vn strictly

increasing and pick arbitrary i ∈ BC
n \{n} and l ∈ N\BC

n . Denote by ω the zero vector of Rn̄ and

by ω(i) (by ω(l)) the vector in Rn̄ whose i-th (whose l-th) component equals maxSi (equals maxSl)

and where all other components are zero. Suppose the existence of a pair (g,Πn) of functions with

g : S → R and Πn : Sn×g[S] → R such that g is continuous on the Cartesian product S and strictly

increasing in each of the n̄ arguments. It is not difficult to see that the equality uCn (s) = Πn(sn, g(s))

cannot hold for all s ∈ S and hence that the game VSA-game associated to C under Σ cannot be

an aggregative game in the sense of [1, Definition 1]. To see this, note that the assumption that

g is strictly increasing in every argument ensures that min{g(ω(i)), g(ω(l))} > g(ω) and—by basic

topological reasons—the continuity of g in turn implies the existence of a pair (s◦, s•) ∈ S×S such

that

s◦i > 0 = s◦j for all j ∈ N\{i} and s•l > 0 = s•j for all j ∈ N\{l}

and that

g(s◦) = g(s•).

Clearly, s◦n = s•n = 0. If the equality uCn (s) = Πn(sn, g(s)) were true for all s ∈ S, then we should

have

uCn (s
◦) = Πn(s

◦
n, g(s

◦)) = Πn(0, g(s
◦)) = Πn(0, g(s

•)) = Πn(s
•
n, g(s

•)) = uCn (s
•)

in contradiction with the fact that the strict increasingness of vn implies

uCn (s
◦) = −ϕC

n − vn(µ
C
n · s◦i ) < −ϕC

n − vn(0) = uCn (s
•).
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3 Price functions, derived notions and conditions thereon

The notion of price function has already been used in the context of a CSI. A general definition

thereof—independent of that of an industry—is here given.

Definition 7 A price function is a function from R+ to R.

The remainder of Sect. 3 provides the definitions of some notions associated with that of a

price function and recalls a definition of generalized convexity that will be often imposed on one of

them in the rest of the paper.

3.1 Derived notions

The domain of the revenue function specified in Definition 8 is—like in the case of a price function—

the entire R+ while the domain of the three functions specified in Definition 9 is R++: the reason

of this choice is essentially technical.

Definition 8 Let p : R+ → R be a price function. The revenue function associated to p is

the function r : R+ → R specified by

r(x) = p(x) · x.

It is observed here, that one can always handle standard specifications of a price function (e.g.,

the specification p(x) = 1/
√
x) that are well-defined only on R++ by assigning an arbitrary real

value of p at 0 (e.g., by putting p(0) = 1 when p(x) = 1/
√
x for all positive x): this arbitrary

imposition makes r vanishing at 0, which is clearly a reasonable condition (continuing with the

previous parenthetical example, whatever the specification of p at 0, the revenue function r is well-

specified on the entire R+ by r(x) =
√
x). Before introducing additional notions associated to that

of a price function, it is explicitly observed that in this paper we put

Z+ = {0, 1, 2, 3, . . .}

and hence that Z+ is the set of all nonnegative integers.

Definition 9 Let p : R+ → R be a price function that is continuous on R++ and let (z, τ) ∈
Z+ × R+.

• The normal primitive price function associated to p is the function P : R++ → R such

that

P (1) = 0 and DP (x) = p(x) for all x ∈ R++.

• The augmented revenue function associated to p and (z, τ) is the function Rz
τ : R++ →

R specified by

Rz
τ (x) = p(x+ τ) · x+ P (x+ τ) · z.

10



• The price elasticity associated to p is the function E : R++ → R specified by

E(x) =
Dp(x)

p(x)
· x,

provided p is nonvanishing on R++ and differentiable on R++.

It is remarked that R0
0(x) = r(x) for all x ∈ R++ and hence that R0

0 in fact coincides with the

restriction of r to R++.

3.2 Semistrictly demiconcave augmented revenue

This Section 3.2 recalls a notion of generalized concavity introduced in [13]: see the Introduction of

the mentioned article for antecedents. Before providing the definition of semistrict demiconcavity,

it is worth to clarify that in this paper a real interval is said to be proper when it is infinite.

Definition 10 A continuous real-valued function f on a proper real interval L is semistrictly

demiconcave iff there exist two (possibly empty) real intervals L1 and L2 such that: L1 ∪ L2 = L

and L1 ∩ L2 = ∅; x ≤ y for every pair (x, y) ∈ L1 × L2; f is strictly concave on L1 and decreasing

on L2.

Proposition 1 recalls some important facts concerning semistrict demiconcavity: the reader is re-

ferred to Section 2.2–3 in [13] for a proof of Proposition 1.

Proposition 1 Let f and g be continuous real-valued functions on a proper real interval L.

1. If f is semistrictly demiconcave, then f is quasiconcave.

2. If f is semistrictly demiconcave and g is increasing and convex, then f − g is semistrictly

demiconcave.

3. Suppose L is open and f is differentiable. Then f is strictly demiconcave if and only if the

implication

Df(x) > 0 ⇒ Df(y) > Df(x)

holds true for every pair (x, y) ∈ L× L such that y < x.

The main result of this work imposes semistrict demiconcavity on each augmented revenue

functions in the precise sense of Definition 11.

Definition 11 Let p : R+ → R be a price function that is continuous on R++. We say that

each augmented revenue function Rz
τ is semistrictly demiconcave iff Rz

τ is semistrictly

demiconcave for every pair (z, τ) ∈ Z+ × R+.

Proposition 2 provides a convenient characterization of the strict demiconcavity of an augmented

revenue function. Proposition 2 follows directly from part 3 of Proposition 1 and its obvious proof

is thus omitted.
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Proposition 2 Let p : R+ → R be a price function that is differentiable on R++ and let (z, τ) ∈
Z+ × R+. Assertions I and II are equivalent .

I. Rz
τ is semistrictly demiconcave.

II. DRz
τ (x) > 0 ⇒ DRz

τ (x− w) > DRz
τ (x) for every (w, x) ∈ R++ × R++ such that w < x.

Remark 4 contains a useful observation.

Remark 4 Let (w, x, z, τ) ∈ R++×R++×Z+×R+ with w < x and put yx = x+τ . The derivatives

DRz
τ (x) and DRz

τ (x− w) in Proposition 2 can be expressed by

DRz
τ (x) = Dp(yx) · x+ p(yx) · (z + 1)

and

DRz
τ (x− w) = Dp(yx − w) · (x− w) + p(yx − w) · (z + 1).

4 Main assumptions

In this Section 4 we introduce all the relevant definitions concerning VSA-systems and VSA-

configurations that are used as assumptions in the analysis of the equilibrium structure and welfare

properties conducted in Section 5. Henceforth, given a function f : X → R on a proper real interval

X, we denote the right upper Dini derivative of f at x ∈ X\{supX} by D+f(x) and by D−f(x)

the left upper Dini derivative of f at x ∈ X\{infX}: when f is either convex or right differentiable

at x ∈ X\{supX}, the derivative D+f(x) is the right derivative of f at x; when f is convex or left

differentiable at x ∈ X\{infX}, the extended real number D−f(x) is the left derivative of f at x.

When f is differentiable at x in the interior of X, we write Df(x) to denote the derivative of f at

x.

4.1 Convex VSA-systems

The basic assumption employed in the analysis of this paper is the convexity of a VSA-system, in

the precise sense of Definition 12. Appendix A contains a discussion on condition H4 and shows

sufficient conditions for the validity of conditions H4. Furthermore, Appendix A contains several

examples of price functions that satisfy conditions H1–4.

Definition 12 Let Σ be a VSA-system. The VSA-system Σ is said to be a convex VSA-system

iff:

H1. the price function p is differentiable on R++;

H2. the inequality Dp(x) < 0 holds for all x ∈ R++;

H3. the revenue function r is continuous;

H4. each augmented revenue function Rz
τ is semistrictly demiconcave;

H5. each variable cost function vn is continuous;

H6. each variable cost function vn is convex and strictly increasing.

12



4.2 Active VSA-systems

The activeness of a VSA-system essentially requires that the inactivity of all carriers—namely, zero

production of liner service by any carrier—does not constitute an equilibrium state when all vessel

sharing agreements are degenerate.

Definition 13 Let Σ be a VSA-system. The VSA-system Σ is said to be an active VSA-system

iff conditions H1, H2, H6 hold and

limx→0 p(x) > min{D+v1 (0) , . . . , D
+vn̄ (0)}.

4.3 VSA-systems with almost linear costs

The following condition imposes an upper bound to the “degree of convexity” of variable costs

functions by requiring that the left-hand derivative of each (convex and strictly increasing) variable

cost function vn at the cap κn is not greater than8

κ1 + · · ·+ κn̄
κ1 + · · ·+ κn̄ −min{κ1, . . . , κn̄}

(4)

times the right-hand derivative of vn at 0.

Definition 14 Let Σ be a VSA-system. The VSA-system Σ is said to be a VSA-system with

almost linear costs iff condition H6 holds and each variable cost function vn satisfies the inequality

D−vn (κn) ≤
κ1 + · · ·+ κn̄

κ1 + · · ·+ κn̄ −min{κ1, . . . , κn̄}
·D+vn (0) .

4.4 VSA-systems with normal price functions

The condition of normality of price function postulates the continuity of a price function bounded

from above.

Definition 15 Let Σ be a VSA-system. The VSA-system Σ is said to be a VSA-system with

a normal price function p iff conditions H1, H2 hold and limx→0 p(x) = +∞ when p is not

continuous at zero.

4.5 Almost smooth configurations

The almost smoothness condition is a technical assumption that will be used to ensure the unique-

ness of an equilibrium. We note here that such condition is satisfied by every Cournot configuration

and that it is satisfied also when all carriers of a CSI except at most one have variable cost functions

that are differentiable on the interior of their domain.

Definition 16 Let Σ be a VSA-system. A VSA-configuration C in N is almost smooth iff

in each block B in C all carriers in B except at most one have variable cost functions that are

differentiable on the interior of their domain.
8The real number in (4) is always strictly larger than 1.
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4.6 Some remarks

Conditions H1 and H2 imply that p is strictly decreasing on R++ and hence the limit in Definitions

13 and 15 is a well-defined extended real: in particular, that limits exist in R ∪ {+∞}. Condition

H6 implies that D+vn (0) exists in R+ and that D−vn (κn) exists in R++ ∪ {+∞}: as n̄ ≥ 2 and

each κn is positive by assumption, a moment’s reflection shows that the almost linearity condition

stipulated in Definition 14 implies that D+vn (0) and D−vn (κn) exists in R++.

5 Equilibrium analysis

Section 5 examines the equilibrium structure of a convex VSA-system and provides an ordinal

comparative statics analysis of the effects of an increase in the concentration of a VSA-configuration.

5.1 Equilibrium structure

Theorem 1 proves the existence, uniqueness and positivity of an equilibrium aggregate in any convex

VSA-system and provides sufficient conditions for the positivity of the unique equilibrium price and

for the uniqueness of an equilibrium in the strict sense. Corollary 1—which follows directly from

part 3 of Theorem 1 and whose proof is omitted—is a particular consequence of part 3 of Theorem

1 on the uniqueness of an equilibrium.

Theorem 1 Let Σ be a convex VSA-system and let C be a VSA-configuration in N .

1. There exists at least one Nash equilibrium e for the VSA-game associated to C under Σ.

2. There exists exactly one Nash equilibrium aggregate η for the VSA-game associated to C under

Σ. Furthermore, the strict inequalities η > 0 and p(η) > 0 hold true if Σ is active.9

3. There exists exactly one Nash equilibrium e for the VSA-game associated to C under Σ if C

is an almost smooth VSA-configuration.

Proof. 1. By virtue of parts 1 and 2 of Theorem 3, a routinary application of a known Nash equi-

librium existence result—use, e.g., [9, Theorem 7.4]—ensures the existence of a Nash equilibrium

for the VSA-game associated to C under Σ.

2. By virtue of Theorem 6, we need to prove only the first sentence of part 2 of Theorem 1. Part

1 of Theorem 1 ensures the existence of at least one Nash equilibrium—and hence of at least one

Nash equilibrium aggregate—for the VSA-game associated to C. Suppose e▷ is a Nash equilibrium

for the VSA-game associated to C under Σ and suppose e◁ is a Nash equilibrium for the VSA-game

associated to C under Σ. Put η▷ = e▷1 + · · ·+e▷n̄ and η◁ = e◁1 + · · ·+e◁n̄ . Furthermore, put C▷ = C

and C◁ = C. Obviously, C▷ ⊑ C◁ and C◁ ⊑ C▷. As e▷ is a Nash equilibrium for the VSA-game

associated to C▷ under Σ and e◁ is a Nash equilibrium for the VSA-game associated to C◁ under

9Clearly, the weak inequality η ≥ 0—but not the weak inequality p(η) ≥ 0—is true whether or not the convex

VSA-system Σ is active.
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Σ, part 1 of Theorem 4 implies that η▷ ≤ η◁ and η◁ ≤ η▷. Consequently, η▷ = η◁ and hence

there exists exactly one Nash equilibrium aggregate for the VSA-game associated to C under Σ.

3. Assume that C is an almost smooth VSA-configuration. Part 1 of Theorem 1 ensures the

existence of at least one Nash equilibrium e◦ for the VSA-game associated to C under Σ and part

2 of Theorem 1 ensures that e◦1 + . . .+ e◦n̄ = e•1 + . . .+ e•n̄ for any other Nash equilibrium e• for the

VSA-game associated to C under Σ. Consequently, there exists exactly one Nash equilibrium for

the VSA-game associated to C under Σ by Theorem 5.

Corollary 1 Let Σ be a convex VSA-system and let C be a VSA-configuration in N .

1. There exists exactly one Nash equilibrium e for the VSA-game associated to C under Σ pro-

vided C is a Cournot configuration.

2. There exists exactly one Nash equilibrium e for the VSA-game associated to C under Σ pro-

vided at most one carrier n in N has a (stand-alone) variable cost function vn that is not

differentiable on (0, κn).

5.2 Equilibrium welfare

Theorem 2 proves that in any convex VSA-system with almost linear costs an increase in the

concentration of the industry generates beneficial effects for consumers: it increases the unique

equilibrium aggregate (part 1 of Theorem 2) and, when either the price function is normal or the

VSA-system is active, it decreases the unique equilibrium price (part 2 of Theorem 2). and yields

an increase in consumer welfare (Corollary 2).

Theorem 2 Let Σ be a convex VSA-system with almost linear costs and let (C◦, C•) be a pair of

VSA-configurations in N such that

C◦ ⊑ C•.

There exists at least one Nash equilibrium e◦ for the VSA-game associated to C◦ and there exists

at least one Nash equilibrium e• for the VSA-game associated to C•. Put η◦ = e◦1 + . . . + e◦n̄ and

η• = e•1 + . . .+ e•n̄.

1. η◦ ≤ η•.

2. p(η•) ≤ p(η◦) if Σ is either a VSA-system with a normal price function or an active VSA-

system.

Proof. Part 1 of Theorem 1 ensures the existence of at least one Nash equilibrium e◦ for the

VSA-game associated to C◦ and of at least one Nash equilibrium e• for the VSA-game associated

to C•. Part 2 of Theorem 4 ensures the validity of the inequality η◦ ≤ η•. Clearly, 0 ≤ η◦ as

pointed out in fn. 9. This proves part 1 of Theorem 2. Henceforth assume that Σ is either a

VSA-system with a normal price function or an active VSA-system. If p is continuous on R+, then

the validity of conditions H1 and H2 entails the strict decreasingness of p on R+ and hence that

p(η•) ≤ p(η◦) by part 1 of Theorem 2. If p is not continuous, then the normality of p implies that
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(p is not continuous at 0 by virtue of assumption H1 and hence that) the limit limx→0 p(x) = +∞:

the validity of such limit in turn implies that limx→0 p(x) > min{D+v1(0), . . . , D
+vn̄(0)} and hence

that Σ is active. Consequently, when p is not continuous, Theorem 6 ensures that 0 < η◦ ≤ η• and

from the last two inequalities we infer that p(η•) ≤ p(η◦) by virtue of conditions H1 and H2.

Corollary 2 proves that in any active convex VSA-system with almost linear costs an increase in

the concentration of the industry generates beneficial effects to consumers by yielding a nonnegative

consumer surplus variation, which is defined as follows. Suppose for a moment that p : R+ → R
is a price function of a VSA-system that is decreasing on the interior of its domain and pick an

arbitrary pair (e◦, e•) of vectors in [0, κ1]× · · · × [0, κn̄] such that η◦ ≤ η• and that 0 ≤ p(η•) with

η◦ and η• defined by η◦ = e◦1 + . . . + e◦n̄ and η• = e•1 + . . . + e•n̄: we henceforth refer to the real

number ∆SP (e
◦, e•) specified by

∆SP (e
◦, e•) = r(η◦)− r(η•) +

∫ η•

η◦ p(x)dx

as to the consumer surplus variation from e◦ to e•.

Corollary 2 Let Σ be an active convex VSA-system with almost linear costs and let (C◦, C•) be a

pair of VSA-configurations in N such that

C◦ ⊑ C•.

Pick an arbitrary Nash equilibrium e◦ for the VSA-games associated to C◦ under Σ and by e• an

arbitrary Nash equilibrium for the VSA-games associated to C• under Σ. Then

0 ≤ ∆SP (e
◦, e•)

(where p is the price function of the VSA-system Σ).

Proof. Put η◦ = e◦1 + . . .+ e◦n̄ and η• = e•1 + . . .+ e•n̄. Then 0 < η◦ ≤ η• and 0 < p(η•) ≤ p(η◦) by

Theorems 2 and 6. Clearly, p is strictly decreasing (and hence positive) on the possibly degenerate

real interval [η◦, η•] by virtue of conditions H1 and H2. Consequently,

p(x)− p(η•) ≥ 0 for all x ∈ [η◦, η•]. (5)

As r(η◦) = p(η◦) · η◦ and

r(η•) = p(η•) · η• = p(η•) · η◦ +
∫ η•

η◦ p(η
•)dx,

we can express ∆SP (e
◦, e•) as the sum of the nonnegative real number (p(η◦) − p(η•)) · η◦ and of

the nonnegative real number
∫ η•

η◦ (p(x)− p(η•))dx. Needless to say, the previous conclusions follow

from the assertion in (5) and from the inequalities inferred at the beginning of this proof.
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5.3 On almost smoothness and almost linearity

Example 4 shows that, in part 3 of Theorem 1, the almost smoothness condition cannot be simply

dropped.

Example 4 Putting N = {1, 2}, consider the CSI

I = (N, p, {Sn}n∈N , {ϕn}n∈N , {vn}n∈N )

with a price function specified by

p(x) = 40− 4x

where Sn = [0, 5] and

vn(x) =

{
30x if x ≤ 1

59x− 29 if x > 1

for all n ∈ N . Suppose, for instance, that ϕn = 5
2 for all n ∈ N and consider then the VSA-system

Σ = (I,Φ) where, for instance,

ϕC
n =

5

2
· µC

n

for all n ∈ N and all C ∈ N . The VSA-system Σ is an active convex VSA-system with a normal

price function and with almost linear costs. Having observed this, put

C̄ = {{1, 2}}

and note that the VSA-configuration C̄ for the VSA-system Σ is not an almost smooth VSA-

configuration. It is readily checked that the vector e∗ and e∗∗ specified by

e∗ = (81/80, 79/80)

and

e∗∗ = (79/80, 81/80)

are distinct Nash equilibria for the VSA-game associated to C̄ under Σ and hence that there exists

a multiplicity of equilibria.

By making use of Example 4, Remark 5 shows the difficulty for our analysis of the equilibrium

structure to make use of the theory of potential games started with [12].

Remark 5 Letting π : [0, 5] → R be the function specified by

π(x) =

{
30x if x ≤ 1

59x− 29 if x > 1

reasoning as in Proposition 2 in [4], one can readily prove that the VSA-game associated to C̄ under

Σ in Example 4 is an (exact) potential game with a potential Π : S → R specified by

Π(s) = 40(s1 + s2)− 4(s21 + s22 + s1 · s2)−
5

4
− π(s1/2 + s2/2).
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Therefore, the game in Example 4 admits a potential: even more, such a potential is strictly concave.

Noting that argmaxΠ = {(1, 1)}, it should be clear from Example 4 that the maximization of the

potential does not provide a description of the entire set of equilibria. This observation shows that,

even by imposing more restrictive assumptions on the price and cost functions, the attempt to convey

the class of games considered here into the class of games with an exact potential (or into some

generalization thereof such as [8]’ pseudo-potential) does not simplify the analysis of the structure

of equilibria in that the maximization of the potential might disregard some equilibria even when

price functions are linear and cost functions are piecewise linear.

5.4 On almost linearity

Example 5 shows that, in Theorem 2 and Corollary 2, the condition of almost linearity of cost

functions cannot be simply dropped.

Example 5 Putting N = {1, . . . , 31}, consider the CSI

I = (N, p, {Sn}n∈N , {ϕn}n∈N , {vn}n∈N )

with a price function specified by

p(x) = 100− x

where Sn = [0, 1] and vn(x) = x for all n ∈ {1, . . . , 30} and where S31 = [0, 30] and

v31(x) =

{
20 · x if x ≤ 26,

44 · x− 624 if x > 26.

Suppose, for instance, that ϕn = 10 for all n ∈ {1, . . . , 30} and that ϕ31 = 300 and then consider

the VSA-system Σ = (I,Φ) where

ϕC
n = 10 · κn · µC

n

for all n ∈ N and all C ∈ N (where κn is the maximum of Sn for all n ∈ N). The VSA-system

Σ is an active convex VSA-system whose price function is normal and any VSA-configuration for

Σ is an almost smooth VSA-configuration. However, the VSA-system Σ is not VSA-system with

almost linear costs. Having observed this, put C◦ = {{1}, . . . , {n}} and C• = {{1, . . . , n}} and note

that

C◦ ⊑ C•.

By part 2 of Corollary 1 there exists exactly one Nash equilibrium e◦ for the VSA-game associated

to C◦ under Σ: this equilibrium is specified by e◦n = 1 for all n ∈ {1, . . . , 30} and by

e◦31 = 25.

By part 2 of Corollary 1 there exists exactly one Nash equilibrium e• for the VSA-game associated

to C• under Σ: this equilibrium is specified by e•n = 1 for all n ∈ {1, . . . , 30} and by

e•31 = 24.
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Putting η◦ = e◦1 + . . .+ e◦31 and η• = e•1 + . . .+ e•31, it is readily checked that

54 = η• < η◦ = 55

and that

45 = p(η◦) < p(η•) = 46.

Finally, it is readily checked that

−54.5 = ∆SP (e
◦, e•) < 0.

6 Final discussion

We have presented a model of competition between the carriers of the container shipping industry

under general hypotheses on the demand and supply side that relax the assumptions of a previous

model in [17] with strictly concave revenue functions and linear cost functions. We have examined

the equilibrium structure of this model and derived a comparative statics analysis from it. The

relaxation of linearity assumptions on costs has drastically changed the structure of strategic in-

teraction between the carriers and has required a non-obvious reappraisal of the proof technique

needed to handle equilibrium problems that cannot be reduced to 1-dimensional ones.

Confirming and generalizing previous results on the structure of equilibria, we have shown how

the nonlinearity of convex costs can have anti-competitive implications on consumer welfare, which

were absent in the linear case. From our analysis it thus emerges that, in the presence of “highly”

convex variable costs (due, for example, to the presence of carriers with highly heterogeneous fleets

in terms of transportation efficiency), the formation of vessel sharing agreements can generate price

increases. The last example of the paper has shown that this can occur even in the presence of

elementary linear price functions and all but one firms with linear costs. Our present results thus

confirm and generalize the previous analysis in [17] but at the same time shows that the relaxation

of cost linearity beyond the condition that we have called “almost linearity” is compatible with

anti-competitive effects.

From a mathematical point of view, the main novelty of this work was to offer a proof technique—

based on a particular dichotomy described first in the Abstract—to prove equilibrium uniqueness

and to perform comparative static analysis in games of competition among carriers that satisfy a

weak form of aggregativity but that cannot be bear classified as aggregative games (at least, in

the usual sense). Theorem 4 uses this technique and all the main results of this work are based on

that result. A less sophisticated version of it, which relies on the simple dichotomy of the set of

all players in a group consisting of those who increase their equilibrium strategy in the transition

between two equilibria with different equilibrium aggregates and the group of all remaining players,

has already been used in the context of certain types of aggregative games: see, e.g., [13] and

the references therein. This less sophisticated technique cannot be used in the present context.

This paper has shown that the more refined dichotomy formed by the set Z defined in the proof

of Theorem 4 and by its complement to the set of all players can instead be fruitfully employed

in the present context. It would be interesting to examine the applicability of the new technique
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to other classes of games that—though non-aggregative in the usual sense—satisfy weak forms of

aggregativity.

7 Appendix

7.1 Appendix A: On condition H4

It is here shown that the class of price functions considered in this work subsumes and expands the

class used in [17], where attention is restricted to price functions with an associated strictly concave

revenue function. Even though Propositions 3 and 4 are essentially known, it is convenient to have

clear and simple statements that show the generality of the class of price functions considered here,

as well as some illustrating examples. Proposition 3 is in fact a variant of part 1 of Proposition 4.3

in [13] that dispenses with unnecessary assumptions on the positivity of p imposed in that article:

it is observed that a strictly decreasing linear function cannot be positive everywhere and hence

the relaxation of that positivity assumption is important if, in our analysis, we want admit also the

elementary class of all strictly decreasing linear price functions.

Proposition 3 Suppose p : R+ → R is a price function satisfying condition H1. If the revenue

function r is strictly concave, then conditions H2 and H4 are satisfied.

Proof. Assume that the function r : R+ → R is strictly concave. Lemma 1 in [17] ensures

that condition H2 is satisfied and hence that p is strictly decreasing on R++. Consequently, P is

strictly concave. Fix an arbitrary pair (z, τ) ∈ Z+ × R+. The function g : R++ → R specified by

g(x) = z · P (x+ τ) is concave because P is strictly so and because z is a nonnegative integer. As

R0
τ (x) = p(x+ τ) · x for all x in the domain R++ of R0

τ , Lemma 1 in [17] implies that R0
τ is strictly

concave when τ > 0. When τ = 0, the strict concavity of R0
τ is an immediate consequence of the

assumption that r is strictly concave in that R0
0(x) = r(x) for all x in the domain R++ of R0

0. As

the sum of a strictly concave function and a concave function is strictly concave, the observation

that Rz
τ = R0

τ + g implies that Rz
τ is strictly concave and we are in a position to conclude that

condition H4 is satisfied.

Remark 6 recalls a connection between the concavity of a strictly decreasing price function and

the strict concavity of the revenue function. In the literature on Cournot equilibrium, the condition

of strict concavity of the revenue function has been used in the [16].

Remark 6 Suppose p : R+ → R is a strictly decreasing price function. If p is concave, then the

revenue function r is strictly concave.10 As is clear from the first specification in Example 6, the

converse of the previous implication is generally false.

10To see why, suppose p is concave and strictly decreasing and, by way of contradiction, suppose r is not strictly

concave. Then there exists (λ, x◦, x•) ∈ (0, 1)× R+ × R+ such that

r(λ · x◦ + (1− λ) · x•) ≤ λ · r(x◦) + (1− λ) · r(x•) (6)

and x◦ ̸= x•. Without loss of generality, suppose x◦ < x•. It is readily seen that

0 < λ · (1− λ) · (x• − x◦) · (p(x◦)− p(x•)) (7)
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Example 6 provides some instances of price functions whose associated revenue function is

strictly concave. In Example 6, the specification of p(0) is immaterial and can be arbitrarily chosen

by the reader.

Example 6 Let (α, β, γ) be a triple of real numbers with β and γ positive. Any price function

p : R+ → R specified at all x > 0 by

p(x) = α+ β · x−
γ

γ+1 (9)

as well as by

p(x) = α− β · xγ (10)

or by

p(x) = α+
β

x+ γ
. (11)

possesses an associated revenue functions that is strictly concave. In particular, each of the previ-

ous specifications makes p and r satisfy all conditions H1–4. It is observed that any price function

p specified on R++ as in (9) is not continuous—even though the associated revenue function is

continuous—and that, when α > 0, the associated price elasticity is not decreasing: this last obser-

vation proves that the strict concavity of r does not imply the decreasingness of E. Finally, it is

observed that the class of price functions specified in (10) includes the class of all strictly decreasing

linear price functions discussed above.

Proposition 4 follows, essentially, from part 3 of Proposition 4.5 in [13]. Proposition 4 is

explicitly proved here for the sake of completeness and readability. In the literature on Cournot

equilibrium, the condition of decreasingness of the price elasticity has been used in the [14].

Proposition 4 Suppose p : R+ → R is a price function satisfying condition H1 and H2 that is

positive on R++. If the price elasticity E is decreasing, then condition H4 is satisfied.

Proof. Assume that the price elasticity E is decreasing and, by way of contradiction, suppose

condition H4 is not satisfied. Proposition 2 ensures the existence of a quadruple (w, x, z, τ) ∈
R++ × R++ × Z+ × R+ such that w < x, that DRz

τ (x) > 0 and DRz
τ (x − w) ≤ DRz

τ (x). Put

yx = x+τ . It is clear from Remark 4 that the inequality DRz
τ (x) > 0 can be equivalently rewritten

as

Dp(yx) · x+ p(yx) · (z + 1) > 0 (12)

and that the inequality DRz
τ (x− w) ≤ DRz

τ (x) can be equivalently rewritten as

Dp(yx − w) · (x− w) + p(yx − w) · (z + 1) ≤ Dp(yx) · x+ p(yx) · (z + 1). (13)

by the strict decreasingness of p. Put δ = λ · x◦ + (1− λ) · x•. Clearly, δ > 0 as λ ∈ (0, 1) and 0 ≤ x◦ < x•. Observe

that

δ · p(λ · x◦ + (1− λ) · x•) < δ · (λ · p(x◦) + (1− λ) · p(x•)) (8)

as the left-hand (right-hand) side of the inequality in (8) is the sum of the left-hand (right-hand) sides of the

inequalities in (6) and (7). Consequently, p(λ · x◦ + (1− λ) · x•) < λ · p(x◦) + (1− λ) · p(x•) in contradiction with the

concavity of p.
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As 0 < w < yx, the positivity and the strict decreasingness of p on R++ imply p(yx−w) > p(yx) > 0:

from (12) and (13) we then infer that

Dp(yx − w) · (x− w) + p(yx − w) · (z + 1)

p(yx − w)
<

Dp(yx) · x+ p(yx) · (z + 1)

p(yx)

and hence that

E(yx − w) · x− w

yx − w
< E(yx) ·

x

yx
. (14)

Put ξ = x
x−w ·

yx−w
yx

and note that ξ ≥ 1. The inequality in (14) implies that E(yx−w) < E(yx)·ξ and
hence that E(yx−w) < E(yx) because E(yx) < 0 and ξ ≥ 1. But the inequality E(yx−w) < E(yx)

is in contradiction with the assumption that E is decreasingness.

Remark 7 recalls a connection between the decreasingness of the price elasticity and the [2]’s

log-concavity of a price function.

Remark 7 Suppose p : R+ → R is a positive and decreasing price function satisfying conditions

H1. If p is log-concave (namely, if ln p is concave), then the price elasticity E is decreasing.11 As is

clear from the first specification in Example 7, the converse of the previous implication is generally

false.

Example 7 provides some instances of price functions whose associated price elasticity is de-

creasing. Also in Example 7, the specification of p(0) is immaterial and can be arbitrarily chosen

by the reader.

Example 7 Let (α, β, γ) be a triple of positive real numbers. Any price function p : R+ → R
specified at all x > 0 by

p(x) = α · 1

exp(xβ)
(15)

as well as by

p(x) = α · 1

(x+ γ)β
(16)

or by

p(x) = α · 1

xβ + γ
(17)

possess an associated decreasing price elasticities. In particular, each of the previous specifications

makes p and r satisfy all conditions H1–4. It is observed that any price function p specified on R++

as in (15) has an associated revenue function that is not strictly concave (in fact, not even concave):

this last observation proves that the decreasingness of E does not imply the strict concavity of r.

Finally, it is observed that no price function specified on R++ as in (16) is log-concave.

11To see why, pick arbitrary x◦ and x• in R++ such that x◦ < x•. As p is positive and decreasing on its domain

R+ and differentiable on R++, the function D ln p is well-defined on R++ and nonpositive on R++. The concavity

of ln p on R++ implies the decreasingness of D ln p on R++. As D ln p is decreasing on R++ and nonpositive on

R++, we have that D ln p(x•) ≤ D ln p(x◦) ≤ 0 and hence that E(x•) = x• ·D ln p(x•) ≤ x◦ ·D ln p(x◦) = E(x◦) as

0 < x◦ < x•. We thus conclude that E is decreasing on its domain R++.

22



To conclude, it is explicitly pointed out that the class of price functions satisfying condition H4

is by no means limited to the union of the classes of price functions that satisfy the conditions in

Propositions 3 and 4: Proposition 4.6 in [13] provides evidence of this claim.

7.2 Appendix B: Fundamental theorems

Theorem 3 Let Σ be a convex VSA-system and let C be a VSA-configuration in N . Consider the

VSA-game associated to C under Σ and suppose n ∈ N .

1. The function uCn is continuous on S.

2. The function uCn (·, s−n) is quasiconcave on Sn for all s−n ∈ S−n.

3. The function uCn (·, s−n) possesses exactly one maximizer on Sn for all s−n ∈ S−n.

Proof. Denote by ω the zero vector (0, . . . , 0) of Rn̄.

1. Observe that

uCn (s) = r(s1 + . . .+ sn̄) ·
sn

s1 + · · ·+ sn̄
− ϕC

n − vn(µ
C
n ·

∑
l∈BC

n
sl)

for all s ∈ S\{ω} and that

uCn (ω) = −ϕC
n − vn(0).

As r and vn are continuous, the first initial observation is readily seen to imply the continuity of

uCn at all s ∈ S\{ω}. As vn and r are continuous at 0 and r is even vanishing at 0, the validity of

the inequalities

0 ≤ sn
s1 + . . .+ sn̄

≤ 1

for all s ∈ S\{ω} and the two initial observations imply the continuity of uCn at ω by virtue of the

Police Theorem and by other basic facts concerning limits. Therefore, uCn is continuous on S.

2. By assumption, R0
τ is semistrictly demiconcave on its domain R++ for all τ ∈ R+: therefore, R

0
τ

is semistrictly demiconcave on Sn\{0} for all τ ∈ R+ in the precise sense that the restriction of R0
τ

to Sn\{0} is semistrictly demiconcave on its domain Sn\{0} for all τ ∈ R+. Observe that, for all

s ∈ S\{ω}, the value of the function uCn (·, s−n) at sn is expressed by

uCn (·, s−n)(sn) = R0
τ (sn)− ϕC

n − vn(µ
C
n ·

∑
l∈BC

n
sl) with τ =

∑
l∈N\{n}sl.

Given this observation12, we infer that uCn (·, s−n) is semistrictly demiconcave on Sn\{0} for all

s ∈ S by virtue of part 2 of Proposition 1 and hence that uCn (·, s−n) is quasiconcave on Sn\{0}
for all s ∈ S by virtue of part 1 of Proposition 1. The continuity of uCn implies the continuity of

uCn (·, s−n) on its domain Sn for all s ∈ S and hence—see, e.g., Theorem 2.2.12 in [3]—uCn (·, s−n) is

quasiconcave on its domain Sn for all s ∈ S.

3. Since Sn is a nonempty compact subset of R+ and since part 1 of Theorem 3 ensures the

continuity of uCn (·, s−n) on Sn for all s−n ∈ S−n, the function uCn (·, s−n) possesses at least one

12Observe also that the function g : Sn\{0} → R specified by g(sn) = ϕC
n + vn(µ

C
n ·

∑
l∈BC

n
sl) is continuous, convex

and strictly increasing in that so is vn by assumption.
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maximizer on Sn by the Weierstrass Theorem. Now, by way of contradiction, suppose x∗ and x∗∗

are distinct maximizers of uCn (·, s−n) on Sn for some s−n ∈ S−n. Without loss of generality, suppose

x∗ < x∗∗. The real interval (x∗, x∗∗) is a nonempty open convex subset of Sn\{0} and uCn (·, s−n) is

constant on (x∗, x∗∗) because uCn (·, s−n) is quasiconcave on Sn by part 2 of Theorem 3 and because

x∗ and x∗∗ are maximizers thereof. We have already observed in the proof of part 2 of Theorem 3

that

uCn (·, s−n)(sn) = R0
τ (sn)− ϕC

n − vn(µ
C
n ·

∑
l∈BC

n
sl) with τ =

∑
l∈N\{n}sl

for all s ∈ S\{ω} and that R0
τ is semistrictly demiconcave on Sn\{0}. By the strict demiconcavity

of R0
τ on Sn\{0}, there exist real intervals L1 and L2 such that: L1∪L2 = Sn\{0} and L1∩L2 = ∅;

x ≤ y for every pair (x, y) ∈ L1 × L2; R
0
τ is strictly concave on L1 and decreasing on L2. So, as

vn is strictly increasing and convex by assumption (see again fn. 12), the function uCn (·, s−n) is

strictly concave on L1 and strictly decreasing on L2: as the real interval (x∗, x∗∗) is a nonempty

open convex subset of Sn\{0}, it is readily seen that we get a contradiction with the fact that

uCn (·, s−n) is constant on (x∗, x∗∗).

It is noted here, that both the aggregate
∑

l∈Be
•
l and the aggregate

∑
l∈Be

◦
l in the definition of

Z given in Lemma 1 are relative to the blocks in the VSA-configuration C◦. Also, it is noted here

that the sets Z and Z defined in Lemma 1 might well be empty: however, this fact is immaterial

as to the validity of Lemma 1 and Theorem 4. Finally, it is noted here that in the statement of

Lemma 1 the vectors e◦ and e• are mere joint strategies and not necessarily Nash equilibria: we

denote those vectors by e◦ and e• only so that the subsequent application of Lemma 1 is even more

immediate.

Lemma 1 Let Σ be a VSA-system satisfying condition H6 and let (C◦, C•) be a pair of VSA-

configurations in N such that C◦ ⊑ C•. Assume that e◦ is a joint strategy for the VSA-game

associated to C◦ under Σ and that e• is a joint strategy for the VSA-game associated to C• under

Σ. Put

Z = {B ∈ C◦ :
∑

l∈Be
•
l <

∑
l∈Be

◦
l }

and suppose n ∈
⋃

B∈ZB. Then

0 < µC◦
n ·

∑
l∈BC◦

n
e◦l ≤ κn (18)

and

0 ≤ µC•
n ·

∑
l∈BC•

n
e•l < κn. (19)

Furthermore,

µC•
n ·D+vn(µ

C•
n ·

∑
l∈BC•

n
e•l ) ≤ µC◦

n ·D−vn(µ
C◦
n ·

∑
l∈BC◦

n
e◦l ) (20)

if at least one of the following additional conditions holds:

1. µC◦
n = µC•

n ;

2. Σ is a VSA-system with almost linear costs.
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Proof. Clearly, ∅ ̸= BC◦
n ⊆ BC•

n in that n ∈ BC◦
n by the definition of BC◦

n and C◦ ⊑ C• by

assumption. As κl > 0 for all l ∈ N , the inclusion BC◦
n ⊆ BC•

n and the definitions of µC◦
n and µC•

n

imply

0 < µC•
n ≤ µC◦

n ≤ 1. (21)

As e◦ and e• are elements of [0, κ1] × · · · × [0, κn̄] and ∅ ̸= BC◦
n ⊆ BC•

n , from the assumption that

n ∈
⋃

B∈ZB and the definition of Z it follows that

0 ≤
∑

l∈BC◦
n

e•l <
∑

l∈BC◦
n

e◦l ≤
∑

l∈BC◦
n

κl (22)

and

0 ≤
∑

l∈BC•
n \BC◦

n
e•l ≤

∑
l∈BC•

n \BC◦
n

κl. (23)

The definition of µC◦
n and the inequalities in (21) and (22) imply 0 < µC◦

n ·
∑

l∈BC◦
n

e◦l ≤ µC◦
n ·∑

l∈BC◦
n

κl = κn. This proves the validity of (18). The inequalities in (22) and (23) imply

0 ≤
∑

l∈BC•
n

e•l <
∑

l∈BC•
n

κl. (24)

The definition of µC•
n and the inequalities in (21) and (24) imply 0 ≤ µC•

n ·
∑

l∈BC•
n

e•l < µC•
n ·∑

l∈BC•
n

κl = κn. This proves the validity of (19).

1. Assume for a moment that µC◦
n = µC•

n . As ∅ ̸= BC◦
n ⊆ BC•

n and κl > 0 for all l ∈ N , the

assumption that µC◦
n = µC•

n and the definition of µC◦
n and µC•

n imply BC◦
n = BC•

n : from (22) we

then infer that

0 ≤
∑

l∈BC•
n

e•l <
∑

l∈BC◦
n

e◦l ≤
∑

l∈BC◦
n

κl. (25)

The definition of µC◦
n and the inequalities in (21) and (25) imply

0 ≤ µC•
n ·

∑
l∈BC•

n
e•l < µC◦

n ·
∑

l∈BC◦
n

e◦l ≤ µC◦
n ·

∑
l∈BC◦

n
κl = κn. (26)

Given the validity of the inequalities in (26), condition H6 implies 0 ≤ D+vn(µ
C•
n ·

∑
l∈BC•

n
e•l ) ≤

D−vn(µ
C◦
n ·

∑
l∈BC◦

n
e◦l ) and the inequalities in (21) in turn imply the validity of (20).

2. Assume now that Σ is a VSA-system Σ with almost linear costs. When µC◦
n = µC•

n , the

validity of part 2 of Lemma 1 follows from the validity of part 1 of Lemma 1. So, henceforth assume

that

µC◦
n ̸= µC•

n . (27)

From (21) and (27) we infer that

0 < µC•
n < µC◦

n ≤ 1. (28)

As κl > 0 for all l ∈ N , the initial observation that ∅ ≠ BC◦
n ⊆ BC•

n and the second inequality in

(28) imply

∅ ≠ BC◦
n ⊂ BC•

n (29)

by the definitions of µC◦
n and µC•

n . Note that (29) entails the existence of at least two distinct

elements in BC•
n : as BC•

n contains at least two distinct elements and κl > 0 for all l ∈ N , from the

first inequality in (28) and the definition of µC•
n we infer that

0 < µC•
n =

κn∑
l∈BC•

n
κl

<
κn

−min{κl : l ∈ BC•
n }+

∑
l∈BC•

n
κl
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and from the strict inclusion in (29) and the definition of µC◦
n that

κn
−min{κl : l ∈ BC•

n }+
∑

l∈BC•
n

κl
≤ κn∑

l∈BC◦
n

κl
= µC◦

n .

Therefore,

0 < µC•
n =

κn∑
l∈BC•

n
κl

<
κn

−min{κl : l ∈ BC•
n }+

∑
l∈BC•

n
κl

≤ µC◦
n (30)

and hence13

µC•
n

µC◦
n

≤
−min{κl : l ∈ BC•

n }+
∑

l∈BC•
n

κl∑
l∈BC•

n
κl

= 1− min{κl : l ∈ BC•
n }∑

l∈BC•
n

κl
. (31)

Given the validity of the inequalities in (18) and (19), condition H6 implies D+vn (0) ≤ D−vn(µ
C◦
n ·∑

l∈BC◦
n

e◦l ) and D+vn(µ
C•
n ·

∑
l∈BC•

n
e•l ) ≤ D−vn (κn): from (28) we then infer that

µC◦
n ·D+vn (0) ≤ µC◦

n ·D−vn(µ
C◦
n ·

∑
l∈BC◦

n
e◦l ) (32)

and

µC•
n ·D+vn(µ

C•
n ·

∑
l∈BC•

n
e•l ) ≤ µC•

n ·D−vn (κn) . (33)

As BC•
n is a nonempty subset of N by (29) and κl > 0 for all l ∈ N , we have that min{κl : l ∈

BC•
n } ≥ min{κ1, . . . , κn̄} > 0 and κ1 + · · ·+ κn̄ ≥

∑
l∈BC•

n
κl > 0. Consequently,

1− min{κl : l ∈ BC•
n }∑

l∈BC•
n

κl
≤ 1− min{κ1, . . . , κn̄}

κ1 + · · ·+ κn̄
. (34)

Recall that

D−vn (κn) ≤
κ1 + · · ·+ κn̄

κ1 + · · ·+ κn̄ −min{κ1, . . . , κn̄}
·D+vn (0) (35)

by the assumption that Σ is a VSA-system with almost linear costs. Note that—because of condition

H6—the validity of the inequality in (35) implies that D−vn (κn) is a well-defined positive real

number and note that the first factor in the right-hand side of the inequality in (35) is a positive

real number because n̄ ≥ 2 and because all caps are positive. Having observed this, from (35) we

infer that

1− min{κ1, . . . , κn̄}
κ1 + · · ·+ κn̄

≤ D+vn (0)

D−vn (κn)
. (36)

From (31), (34), (36) we conclude that

µC•
n

µC◦
n

≤ D+vn (0)

D−vn (κn)

and hence—as µC◦
n and D−vn (κn) are positive real numbers—that

µC•
n ·D−vn (κn) ≤ µC◦

n ·D+vn (0) . (37)

The validity of (20) follows from (32), (33) and (37).

13Note that the right-hand side of the inequality in (31) is the quotient of the left- and the right-hand side of the

second inequality in (30).
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Theorem 4 Let Σ be a convex VSA-system and let (C◦, C•) be a pair of VSA-configurations in

N such that C◦ ⊑ C•. Assume that e◦ is a Nash equilibrium for the VSA-game associated to C◦

under Σ and that e• is a Nash equilibrium for the VSA-game associated to C• under Σ. Let η◦ and

η• be the equilibrium aggregates defined by η◦ = e◦1 + . . .+ e◦n̄ and η• = e•1 + . . .+ e•n̄. Then

η◦ ≤ η•

if at least one of the following additional conditions holds:

1. C◦ = C•;

2. Σ is a VSA-system with almost linear costs.

Proof. Assume that either C◦ = C• or Σ is a VSA-system with almost linear costs. Denote by

ω the zero vector of Rn̄. Clearly, the equality C◦ = C• implies that µC◦
n = µC•

n for all n ∈ N . By

way of contradiction, suppose η• < η◦. Then

0 < η◦ − η•. (38)

Put

Z = {B ∈ C◦ :
∑

l∈Be
•
l <

∑
l∈Be

◦
l }

and

Z = {l ∈
⋃

B∈ZB : e•l < e◦l }.

Furthermore, put

z = |Z|.

A moment’s reflection shows14 the validity of the Fundamental Membership

z ∈ Z+\{0}. (39)

Lemma 1 ensures that

0 < µC◦
n ·

∑
l∈BC◦

n
e◦l ≤ κn (40)

for all n ∈ Z, that

0 ≤ µC•
n ·

∑
l∈BC•

n
e•l < κn (41)

for all n ∈ Z and that

µC•
n ·D+vn(µ

C•
n ·

∑
l∈BC•

n
e•l ) ≤ µC◦

n ·D−vn(µ
C◦
n ·

∑
l∈BC◦

n
e◦l ) (42)

14Clearly, z is a nonnegative integer. To check the Fundamental Membership, observe that

η◦ − η• =
∑

B∈Z
∑

n∈B(e
◦
n − e•n) +

∑
B∈C◦\Z

∑
n∈B(e

◦
n − e•n).

The very definition of Z entails that
∑

B∈C◦\Z
∑

n∈B(e
◦
n−e•n) ≤ 0 and hence we have that η◦−η• ≤

∑
B∈Z

∑
n∈B(e

◦
n−

e•n): the inequality in (38) in turn implies

0 <
∑

B∈Z
∑

n∈B(e
◦
n − e•n).

The very definition of Z entails that
∑

B∈Z
∑

n∈B(e
◦
n−e•n) ≤

∑
n∈Z(e

◦
n−e•n): we thus conclude that 0 <

∑
n∈Z(e

◦
n−e•n)

and hence that z ̸= 0.
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for all n ∈ Z. As e◦ and e• are elements of Rn̄
+ and η• < η◦, we have that

0 ≤ η• < η◦ (43)

and

e◦ ∈ Rn̄
+\{ω}. (44)

As κl > 0 for all l ∈ N , the definition of µC◦
n and µC•

n implies

0 < µC•
n ≤ µC◦

n (45)

for all n ∈ N . We briefly show that also

e• ∈ Rn̄
+\{ω}. (46)

Indeed, suppose for a moment that e• = ω and pick an arbitrary i ∈ N such that e◦i > 0: the

existence of such i is implied by (44). As uC
•

i (·, e•−i) has exactly one maximizer by part 3 of

Theorem 3 and by the assumption that Σ is a convex VSA-system, the inequality uC
•

i (e◦i , e
•
−i) −

uC
•

i (e•i , e
•
−i) < 0 is true in that e•i is a maximizer of uC

•
i (·, e•−j) and e•i = 0 ̸= e◦i . The inequality

uC
•

i (e◦i , e
•
−i)− uC

•
i (e•i , e

•
−i) < 0 can be equivalently rewritten as

p(e◦i ) · e◦i + vi(0)− vi(µ
C•
i · e◦i ) < 0. (47)

As i ∈ BC◦
i by the definition of BC◦

i and e◦ ∈ Rn̄
+\{ω} by (44), a moment’s reflection shows that

(47) implies

p(η◦) · e◦i + vi(−µC◦
i · e◦i + µC◦

i ·
∑

l∈BC◦
i

e◦l )− vi(µ
C◦
i ·

∑
l∈BC◦

i
e◦l ) < 0 (48)

in that p is strictly decreasing on R++ by conditions H1 and H2 and 0 < e◦i ≤ η◦ by the choice

of i and the definition of η◦ and in that vi is convex by condition H6 and 0 < µC•
i ≤ µC◦

i by the

validity of (45) for all n ∈ N .15 By virtue of the momentary assumption that e• = ω, the inequality

in (48) can be equivalently rewritten as uC
◦

i (e◦i , e
◦
−i) − uC

◦
i (e•i , e

◦
−i) < 0 and this suffices to infer a

contradiction with the assumption that e◦ is a Nash equilibrium. This concludes the proof of the

validity of (46). From (43) and (46) we also infer that

0 < η• < η◦. (49)

Put σ◦ =
∑

n∈Ze
◦
n and σ• =

∑
n∈Ze

•
n. Clearly,

0 ≤ min{η• − σ•, η◦ − σ◦}. (50)

A moment’s reflection shows16 the validity of the Fundamental Inequality

η◦ − η• ≤ σ◦ − σ•. (51)

15As vj is convex, vj(a)− vj(b) ≥ vj(c)− vj(d) when d− c ≥ b− a and c ≥ a.
16Put T =

⋃
B∈ZB. To check the Fundamental Inequality, observe that

σ◦ − σ• =
∑

n∈Z(e
◦
n − e•n)

and that

η◦ − η• =
∑

n∈Z(e
◦
n − e•n) +

∑
n∈T\Z(e

◦
n − e•n) +

∑
B∈C◦\Z

∑
n∈B(e

◦
n − e•n).

As
∑

B∈C◦\Z
∑

n∈B(e
◦
n − e•n) ≤ 0 by the very definition of Z and

∑
n∈T\Z(e

◦
n − e•n) ≤ 0 by that of T and Z, we get

η◦ − η• ≤
∑

n∈Z(e
◦
n − e•n) and hence η◦ − η• ≤ σ◦ − σ•.
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The definition of σ• implies σ• ≥ 0 in that e• is an element of Rn̄
+: the inequalities in (49) and (51)

in turn imply 0 ≤ σ• < σ◦. By making use of conditions H1 and H2, from the inequalities in (49)

we infer that

0 < p(η•)− p(η◦) (52)

and that Dp(η•) and Dp(η◦) are negative real numbers. Condition H6 and the validity of the

inequalities in (40) for all n ∈ Z imply the existence of D−vn(µ
C◦
n ·

∑
l∈BC◦

n
e◦l ) in R++ ∪ {+∞} for

all n ∈ Z while condition H6 and the validity of the inequalities in (41) for all n ∈ Z imply the

existence of D+vn(µ
C•
n ·

∑
l∈BC•

n
e•l ) in R+ for all n ∈ Z and hence that

D+vn(µ
C•
n ·

∑
l∈BC•

n
e•l ) ∈ R+ (53)

for all n ∈ Z. We briefly show that D−vn(µ
C◦
n ·

∑
l∈BC◦

n
e◦l ) ̸= +∞ for all n ∈ Z and hence that

D−vn(µ
C◦
n ·

∑
l∈BC◦

n
e◦l ) ∈ R++ (54)

for all n ∈ Z. Indeed, if the equality D−vm(µC◦
m ·

∑
l∈BC◦

m
e◦l ) = +∞ were true for some m ∈ Z,

then µC◦
m ·D−vm(µC◦

m ·
∑

l∈BC◦
m

e◦l ) = +∞ by (45) and hence, equivalently,

lim
x→0−

vm(µC◦
m · (x+

∑
l∈BC◦

m
e◦l ))− vm(µC◦

m ·
∑

l∈BC◦
m

e◦l )

x
= +∞;

however, the equilibrium conditions and the validity of the inequalities in (41) for all n ∈ Z imply

lim inf
x→0−

uC
◦

m (·, e◦−m)(e◦m + x)− uC
◦

m (·, e◦−m)(e◦m)

x
∈ R+ ∪ {+∞}

in that m ∈ Z and hence—writing extensively the sum of the two previous limits as the limit of

their sum—we would obtain

lim inf
x→0−

p(η◦ + x) · (e◦m + x)− p(η◦) · (e◦m)

x
= +∞

in contradiction with the fact that Dp(η◦)e◦m+ p(η◦) is a well-defined real number. This completes

the proof of the validity of (54) for all n ∈ Z: by the validity of (45) for all n ∈ N , we are in a

position to conclude that

µC◦
n ·D−vn(µ

C◦
n ·

∑
l∈BC◦

n
e◦l ) ∈ R++ (55)

for all n ∈ Z. Clearly, the validity of (45) and (53) for all n ∈ Z implies

µC•
n ·D+vn(µ

C•
n ·

∑
l∈BC•

n
e•l ) ∈ R+

for all n ∈ Z. We are now in a position to conclude that, for all n ∈ Z, the left derivative

D−uC
◦

n (·, e◦−n)(e
◦
n) of u

C◦
n (·, e◦−n) at e

◦
n is a well-defined real number specified by

Dp(η◦) · e◦n + p(η◦)− µC◦
n ·D−vn(µ

C◦
n ·

∑
l∈BC◦

n
e◦l ) (56)

and the right derivativeD+uC
•

n (·, e•−n)(e
•
n) of u

C•
n (·, e•−n) at e

•
n is a well-defined real-number specified

by

Dp(η•) · e•n + p(η•)− µC•
n ·D+vn(µ

C•
n ·

∑
l∈BC•

n
e•l ). (57)
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Having clarified these points, we continue the proof observing that the equilibrium conditions imply

that

D+uC
•

n (·, e•−n)(e
•
n) ≤ 0 ≤ D−uC

◦
n (·, e◦−n)(e

◦
n) (58)

for all n ∈ Z and hence that∑
n∈ZD

+uC
•

n (·, e•−n)(e
•
n) ≤ 0 ≤

∑
n∈ZD

−uC
◦

n (·, e◦−n)(e
◦
n). (59)

Given the specifications of D−uC
◦

n (·, e◦−n)(e
◦
n) and D+uC

•
n (·, e•−n)(e

•
n) in (56) and (57) for all n ∈ Z,

it should be clear that the membership in (39), the validity of the membership in (55) for all n ∈ Z

and the second inequality in (59) entail that

0 < Dp(η◦) · σ◦ + p(η◦) · z (60)

and it should be clear that the validity of the inequality in (42) for all n ∈ Z, the membership in

(39) and the inequalities in (59) entail that

Dp(η•) · σ• + p(η•) · z ≤ Dp(η◦) · σ◦ + p(η◦) · z. (61)

The inequality in (51) implies that σ• ≤ σ◦ + η• − η◦: from the already observed negativity of

Dp(η•) and the inequality in (61) we then infer that

Dp(η•) · (σ◦ + η• − η◦) + p(η•) · z ≤ Dp(η◦) · σ◦ + p(η◦) · z. (62)

If the equality σ• = 0 were true, then the inequality in (61) would imply that (p(η•)− p(η◦)) · z ≤
Dp(η◦)·σ◦: a contradiction with the fact that the left-hand side of the previous inequality is positive

by (39) and (52) while its right-hand side is negative by the already observed negativity of Dp(η◦)

and by the already observed positivity of σ◦. So σ• > 0 and from (38) and (51) we infer that

0 < η◦ − η• < σ◦. (63)

Put τ = η◦ − σ◦ and w = η◦ − η•. Furthermore, put x = σ◦. It is readily observed that the

right-hand sides of (60) and (62) can be equivalently rewritten as DRz−1
τ (x) while the left-hand

side of (62) as DRz−1
τ (x− w): noting that (τ, z) ∈ R+ × Z+ with z ≥ 1 by (39) and (50) and that

(w, x) ∈ R++ × R++ with w < x by the inequalities in (63), we are in a position to conclude that

the inequalities in (60) and (62) are in contradiction with Proposition 2 and conditions H1 and H4.

Theorem 5 Let Σ be a VSA-system satisfying conditions H1, H2, H6 and let C be an almost

smooth VSA-configuration in N . Assume that e◦ is a Nash equilibrium for the VSA-game associated

to C under Σ and that e• is a Nash equilibrium for the VSA-games associated to C under Σ. Let

η◦ and η• be the equilibrium aggregates defined by η◦ = e◦1 + . . . + e◦n̄ and η• = e•1 + . . . + e•n̄. If

η◦ = η•, then e◦ = e•.
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Proof. Assume that η◦ = η• and, by way of contradiction, suppose e◦ ̸= e•. Put η = η◦. Then

η = η• and

0 < η (64)

in that e◦ and e• are distinct elements of the Cartesian product [0, κ1]×· · ·×[0, κn̄] such that η◦ = η•.

Therefore, Dp(η) is a well-defined negative real number by conditions H1 and H2. Recalling that

0 < µC
n =

κn∑
l∈BC

i
κl

≤ 1 (65)

for all n ∈ N , we continue the proof by distinguishing two exhaustive cases.

Case
∑

l∈BC
n
e◦l =

∑
l∈BC

n
e•l for all n ∈ N . Suppose for a moment that

∑
l∈BC

n
e◦l =

∑
l∈BC

n
e•l for

all n ∈ N . The inequality e◦ ̸= e• then implies the existence of m ∈ N and of i and j in BC
m such

that

e◦i < e•i (66)

and

e•j < e◦j .

As i and j belongs to BC
m, from the definition of BC

i and BC
j we infer that BC

m = BC
i = BC

j and

from the last two inequalities we conclude that i ̸= j. As C is an almost smooth VSA-configuration,

either vi or vj is differentiable on the interior of its domain. Without loss of generality, suppose vi
is differentiable on the interior of its domain. Keeping in mind the validity of (65) for all n ∈ N ,

note that

0 < µC
i ·

∑
l∈BC

i
e◦l < κi (67)

because e◦l ∈ [0, κl] for all l ∈ BC
i and because i and j are elements of BC

i such that e◦i < e•i and

e•j < e◦j . Clearly,

0 < µC
i ·

∑
l∈BC

i
e•l < κi (68)

in that
∑

l∈BC
i
e◦l =

∑
l∈BC

i
e•l by the momentary assumption. Note that

0 ≤ e◦i < e•i ≤ κi (69)

by (66) and by the fact that e◦i and e•i are elements of [0, κi]: recalling that Dp(η) is a well-defined

real number and that vi is differentiable on the interior of its domain [0, κi], it is readily observed

that the inequalities in (67) and (68) imply that the right-derivative D+uCi (·, e◦−i)(e
◦
i ) of u

C
i (·, e◦−i)

at e◦i and the left-derivative D−uCi (·, e•−i)(e
•
i ) of uCi (·, e•−i) at e•i exist in R and are respectively

specified by

Dp(η) · e◦i + p(η)− µC
i ·Dvi(µ

C
i ·

∑
l∈BC

i
e◦l ) (70)

and

Dp(η) · e•i + p(η)− µC
i ·Dvi(µ

C
i ·

∑
l∈BC

i
e•l ). (71)

The Nash equilibrium conditions then imply

D+uCi (·, e◦−i)(e
◦
i ) ≤ 0 ≤ D−uCi (·, e•−i)(e

•
i ) (72)
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by virtue of (69). As
∑

l∈BC
i
e◦l =

∑
l∈BC

i
e•l , from the specifications of the sided derivatives in (70)

and (71) and from the inequalities in (72) we conclude that Dp(η) · e◦i ≤ Dp(η) · e•i : a contradiction

with the inequality in (66) and the already observed fact that Dp(η) is a negative real number.

Case
∑

l∈BC
n
e◦l ̸=

∑
l∈BC

n
e•l for some n ∈ N . Suppose now that

∑
l∈BC

n
e◦l ̸=

∑
l∈BC

n
e•l for some

n ∈ N . In particular, but without loss of generality, suppose∑
l∈BC

n
e◦l <

∑
l∈BC

n
e•l . (73)

Then there exists i ∈ BC
n such that

e◦i < e•i . (74)

Recalling that e•l ∈ [0, κl] for all l ∈ BC
i and keeping in mind the validity of (65) and (73), note

that

0 ≤ µC
i ·

∑
l∈BC

i
e◦l < µC

i ·
∑

l∈BC
i
e•l ≤ κi. (75)

It is now remarked that if µC
i ·

∑
l∈BC

i
e•l = κi and D−vi(κi) = +∞, then e• cannot be a Nash

equilibrium since in that case the left derivative of uCi (·, e•−i) at e•i is −∞: to see this, note that

such left derivative is the limit

lim
x→0−

p(η + x) · (e•i + x)− vi(µ
C
i · (x+ κi))− p(η) · e•i + vi(µ

C
i · κi)

x

and observe that the limit

lim
x→0−

p(η + x) · (e•i + x)− p(η)e•i
x

exists in R by the differentiability of p at η and that the limit

lim
x→0−

vi(µ
C
i · (x+ κi))− vi(µ

C
i · κi)

x

equals +∞ since it can be expressed as the product µC
i ·D−vi(κi) of the positive real µC

i and the

positively infinite left derivative D−vi(κi). Having remarked this, from (75) we are in a position

to conclude that the right derivative at µC
i ·

∑
l∈BC

i
e◦l and the left derivative at µC

i ·
∑

l∈BC
i
e•l of

the convex and strictly increasing function vi exist in R. Recalling that Dp(η) and µC
i are real

numbers, we then readily infer that the right derivative of uCi (·, e◦−i) at e◦i and the left derivative

of uCi (·, e•−i) at e
•
i exist in R and are respectively specified by

Dp(η) · e◦i + p(η)− µC
i ·D+vi(µ

C
i ·

∑
l∈BC

i
e◦l ) (76)

and

Dp(η) · e•i + p(η)− µC
i ·D−vi(µ

C
i ·

∑
l∈BC

i
e•l ). (77)

Note that

0 ≤ e◦i < e•i ≤ κi (78)

by (74) and by the fact that e◦i and e•i are elements of [0, κi]. The equilibrium conditions then

imply

D+uCi (·, e◦−i)(e
◦
i ) ≤ 0 ≤ D−uCi (·, e•−i)(e

•
i ) (79)
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by virtue of (78). As
∑

l∈BC
i
e◦l <

∑
l∈BC

i
e•l , the convexity of vi implies

D+vi(µ
C
i ·

∑
l∈BC

i
e◦l ) ≤ D−vi(µ

C
i ·

∑
l∈BC

i
e•l )

and from the specifications of the sided derivatives in (76) and (77) and from the inequalities in

(79) we conclude that Dp(η) · e◦i ≤ Dp(η) · e•i : a contradiction with the inequality in (74) and the

already observed fact that Dp(η) is a negative real number.

Theorem 6 Let Σ be an active VSA-system and let C be a VSA-configuration in N . Assume that

e is a Nash equilibrium for the VSA-game associated to C under Σ and put η = e1+ · · ·+ en̄. Then

η > 0 and p(η) > 0.

Proof. Pick n ∈ {l ∈ N : D+vl(0) = min{D+v1(0), . . . , D
+vn̄(0)}} and put ω = (0, . . . , 0) ∈ Rn̄.

The right derivative D+uCn (·, ω−n)(ωn) of u
C
n (·, ω−n) at ωn exists in R++ ∪ {+∞} and is

lim
x→0+

p(x) · x− vn(µ
C
n · x) + vn(0)

x
.

It is obvious that such right derivative—if it exists—is the limit expressed above. It is less obvious

that the limit expressed above exists in R++ ∪ {+∞}. To see this, note that

lim
x→0+

p(x) · x− vn(µ
C
n · x) + vn(0)

x

exists in the extended reals and coincides with

lim
x→0+

p(x)− limx→0+
vn(µ

C
n · x)− vn(0)

x
(80)

by the fact that the first limit in (80) exists in R∪ {+∞} because conditions H1 and H2 imply the

decreasingness of p on R++ and by the fact that the second limit in (80) exists in R+ as

lim
x→0+

vn(µ
C
n · x)− vn(0)

x
= µC

n ·D+vn(0)

with 0 < µC
n ≤ 1 by the definition of µC

n and with D+vn(0) ∈ R+ by condition H6. The last two

observed facts imply also µC
n ·D+vn(0) ≤ D+vn(0) and hence

lim
x→0+

p(x) · x− vn(µ
C
n · x) + vn(0)

x
≥ lim

x→0+
p(h)−D+vn(0).

Noting that limx→0+ p(x)−D+vn(0) > 0 by the assumption that Σ is active, we are in a position

to get the desired conclusion that D+uCn (·, ω−n)(ωn) exists in R++ ∪ {+∞}. Therefore, ω cannot

be a Nash equilibrium and hence e ∈ Rn̄
+\{ω} as el ∈ [0, κl] for all l ∈ N . This proves that η > 0

and implies the existence of i in N such that ei > 0. If p(η) ≤ 0, then

p (η − ei) · 0− ϕC
i − vi(µ

C
i · (−ei +

∑
l∈BC

i
el)) > p (η) · ei − ϕC

i − vi(µ
C
i ·

∑
l∈BC

i
el)

because ei and µC
i are positive real numbers and because vi is strictly increasing: the observation

that the left-hand side of the last equality is uCi (ωi, e−i) and that the right-hand side of the last

equality is uCi (ei, e−i) yields a contradiction with the assumption that e is a Nash equilibrium. So,

p(η) > 0.
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