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Abstract

We examine a game-theoretic model of vessel sharing agreements in industries endowed with
a general class of price functions and with classes of convex cost functions. We study the
equilibrium structure thereof—in particular, the existence of a unique equilibrium aggregate
and the existence of a unique equilibrium—and we provide a comparative statics analysis of
consumer welfare with respect to an ordinal measure of concentration of the industry. We
show that the a “high degree” of convexity of the cost functions can generate anti-competitive
effects. In the presence of linear costs, the model satisfies a weak aggregative form in the
sense of aggregative games. By allowing for the non-linearity of variable cost functions, we
further weaken the aggregative nature of the games considered. Here we provide a specific
new technique for treating these games in which both the equilibrium structure and the
comparative statics analysis are based on the comparison of the equilibrium conditions of the
players who positively vary their strategies within the groups that positively vary the group’s
equilibrium aggregate from an equilibrium with a smaller global aggregate associated with a
less concentrated industry to an equilibrium with a larger global aggregate associated with a
more concentrated industry.
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1 Introduction

The key aspect of a vessel sharing agreement is the joint production, by its members, of a liner
transportation service of containerized cargo. The peculiarity of this joint production method
lies in the absence of compensation for the costs incurred by each member of the agreement in
producing a transportation service that is partly commercially managed by the other members of
the agreement, who are the beneficiary of the revenues resulting from the operation of that part
of the service. The fact that a vast majority (more than the 80%) of world trade takes place via
maritime transportation and that agreements of this kind have become increasingly frequent! gives
a measure of the dimension of the phenomenon studied here.

The importance of analyzing agreements that involve the sharing of independently owned means
of production is widely recognized in economics (see, e.g., [5] and [20] as well as the subsequent
literature). Beyond a purely theoretical interest, a real reason to examine these agreements is that
they can give rise to anti-competitive effects and, in fact, some antitrust laws prohibit them, at least
in principle. For instance, vessel sharing agreements are in principle prohibited by Article 101(1)
of the Treaty on the Functioning of the European Union and they can be run only by virtue of
the “emending” Article 101(3) of that Treaty, which allows for pro-competitive agreements.? Our
understanding of the effects of modes of production that call for the joint use of independently owned
means of production can thus have potential implications for the economy. Such understanding
cannot ignore the particular mechanism used by companies to organize joint production, which is,
in fact, at the origin of a possible change in the strategic behavior of the agents involved and of the
repercussions on society.

To make the point of our discussion as clear as possible from the beginning, it is worth to
immediately clarify the production mechanism envisaged by a vessel sharing agreement. Denoting
by B a finite and nonempty set of carriers of a vessel sharing agreement where each member
n € B contributes a maximum production capacity x, € R, the typical contract underlying that
agreement stipulates that each member n € B dedicates a fraction

_ M
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of its capacity x, to the transportation of containers commercially managed by the member [, for
every member [ € B of the agreement: the member [ can thus ezclusively use member n’s production
capacity up to the above specified portion and the remaining capacity cannot be used by any other
member. The cost incurred by carrier n € B for the transportation of the containers commercially
managed by a member [ € B\{n} are not compensated by | and each member n € B enjoys
exclusive rights to the revenues associated with the transportation of the containers commercially
managed by n. As is clear from this brief description, such peculiar production mechanism can
be extended in principle to any other modes of transportation that calls for the use of production
capacities, if not even—with due abstraction—to industries other than transportation.

!See, e.g., [19, p. 139)].

2During the so-called CBER era—until 25" April 2024—the members of large prospective vessel sharing agree-
ments had to self-assess the pro-competitive nature of the agreement; with the end of that “era”, common European
antitrust rules and procedures apply.



A model of a system of vessel sharing agreements in which a game of oligopolistic competition
is associated with each possible configuration of vessel sharing agreements has been first proposed
in [17]. The mentioned article makes the point that, since the transportation of containers can be
understood as a homogeneous good (more correctly, as a homogeneous service) and since firms’ legal
identities are kept separate, carriers’ revenues should be modelled as in the usual Cournot oligopoly:
the revenue of each carrier thus depends on the sum of the quantities of transportation service
supplied to the market by all carriers of the industry. Also, and importantly, that same article makes
the point that the cost function of each carrier depends on a fraction of the sum of the quantities
of transportation service supplied to the market by all carriers of a vessel sharing agreement.? As
a result, in the case of a degenerate configuration of vessel sharing agreements (namely, the vessel
sharing agreements formed by only one carrier) the associated game of oligopolistic competition is
the usual Cournot game, but in all other cases the associated game is structurally dissimilar from it.
For the games generated by a system of vessel sharing agreements, [17] has examined the equilibrium
structure and provided a comparative statics analysis unfolding the pro-competitive effects of the
formation and expansion of vessel sharing agreements. More precisely, under the assumption of
strict concavity of the revenue function and of the linearity of variable cost functions, the mentioned
article has proved that every game generated by a system has a unique Nash equilibrium and that
the enlargement of vessel sharing agreements yields a decrease in the unique price equilibrium and,
consequently, an increase in consumer welfare.

In the present contribution we generalize the investigation in [17] both on the demand side,
by admitting a general class of price functions (which properly subsumes that considered in the
mentioned article), and on the supply side, by admitting strictly increasing and convex (but possibly
nonlinear) variable cost functions. Dealing with such generalization provides a new contribution,
from both a game-theoretic and mathematical viewpoint and from an economic viewpoint, by not
only responding to the need to carry an analysis based on hypotheses on the most general primitives
but also, especially on the supply side, to remove assumptions that are not necessarily plausible.
In particular, the linearity of costs may conflict with the heterogeneity of the productive efficiency
of the various ships of the fleet of a carrier. Even when we assume that each vessel operates under
linear and strictly increasing variable costs, in the presence of a fleet composed of multiple vessels
with different linear variable costs, a simple microeconomic optimization exercise leads to variable
costs for the carrier that are piecewise linear, convex, and strictly increasing. It must be conceded
that the heterogeneity of the productive efficiency of the various ships of the fleet of a carrier is
commonplace in the container shipping industry and hence that the assumption of linearity of
variable cost functions is in fact restrictive and unrealistic.

From a game-theoretic and mathematical viewpoint, the relaxation of the cost linearity as-

3A point already clarified in [17] is that the formation of a vessel sharing agreement does not alter the variable
cost function of its members (even though the mechanism alters the argument of that function): the simple reason
for this is that such agreements do not alter a member’s fleet. To the contrary, the fixed costs of providing a liner
service are altered by the formation of vessel sharing agreements and a good part of the incentives for its members
to sign the underlying contract might in fact arise from a decrease in fixed costs. Examining the members’ incentives
to form a vessel sharing agreement is not the object of this paper and hence, for the present analysis, the changes
in fixed costs are just immaterial. For this reason we do not need to (and we will not) make any assumption about
fixed costs.



sumption drastically changes the structure of the games studied. It is not difficult to check—if
needed, see Remark 3—that the games considered here, as well as those in [17], are not typically
aggregative games in the general sense of [1, Definition 1] as well as in the sense of [6] or of [7]. The
main structural difference between the games examined in [17] and those considered here is that,
by virtue of cost linearity, in the games examined in [17] the partial derivative of a player’s utility
function with respect to the player’s strategic variable is equivalent to that of a player of a Cournot
game and hence of an aggregative game. The analysis in [17] relies on the observation that, under
certain assumptions on the (pseudo-)concavity of players’ utility function in their own strategic
variables, only the partial derivatives are what really matters and what actually determines the
structure of the set of equilibria. Lato sensu, the games of vessel sharing agreements with linear
costs considered in [17] are “almost smooth aggregative games” in the sense of [10, Definition 1]
although, stricto sensu, a comparison is not possible because of some assumptions introduced by
those authors in the definition of an almost smooth aggregative game.* The above observation is
no longer valid when the linearity of variable cost functions is relaxed in that the structure of the
resulting games cannot be assimilated to that of an almost smooth aggregative game, not even
lato sensu. Omne of the contributions of the present paper is in fact providing a technique to deal
with equilibrium uniqueness and to provide comparative statics when the games of vessel sharing
agreements cannot be reduced to (almost smooth) aggregative games. Also, the present research
might provide a stimulus for considering more general notions of an aggregative game.®

From an economic viewpoint, the present work confirms and partly extends to the case of convex
variable cost functions the main economic conclusions in [17], where the formation and expansion
of vessel sharing agreements is proved to have pro-competitive effects under the assumption of cost
linearity. More precisely, the present work shows that the mentioned conclusions can be generalized
only up to a certain degree of convexity of variable cost functions and that, in industries with
“highly” convex variable cost functions, the formation and expansion of vessel sharing agreements
can actually harm consumers. This indicates that the heterogeneity of firms’ production efficiency
may constitute a structural cause of non-competitive effect.

The rest of the article is organized as follows. Section 2 formally presents the fundamental
structures needed to model a system of vessel sharing agreements and of a game associated with
it. Section 3 deals with various definitions derived from that of a price function and recalls a
notion of generalized convexity. Relying on those definitions, Section 4 introduces the main object
of our analysis—convex systems of vessel sharing agreements—and discusses other conditions that
a system of vessel sharing agreements might or might not satisfy. Section 5 contains the core
findings of the paper: it investigates the uniqueness of the equilibrium aggregate, the equilibrium
uniqueness, the positivity of equilibria in convex VSA-systems and examines the implications of
the increase of concentration of a VSA-configuration on the variation in consumer welfare. The

1A similar nomenclature is used also in [15] and in other papers, but with a more traditional and restrictive
meaning.

SWe can’t prove or disprove that the games examined here are generalized quasi-aggregative games in the sense of
[11, Definition 2]: see also Observation II in [18] for a simple characterization thereof. Probably, to encompass the
class of games considered here one needs at least two distinct interaction systems in the sense of the last-mentioned
article and a more general definition of an aggregative game is in fact needed.



analysis is supplemented by examples illustrating the impossibility to drop specific assumptions.
Section 6 concludes. A final Appendix 7 discusses a general condition on price functions (Appendix
7.1) and contains the fundamental theorems underlying the main results of this paper (Appendix
7.2).

2 Vessel sharing agreements

2.1 Container shipping industries

A container shipping industry, henceforth abbreviated CSI for short, is modelled as an oligopoly
in which a set of carriers compete in the offer of a liner service for the transport of containers, here
understood as a single homogeneous commodity. Each carrier has a maximum capacity (i.e., a
cap to the volume of containers that such an operator can transport) and faces both a fixed cost
of operating a liner service (i.e., the pure cost of operating a liner service independently of the
quantity of containers transported) and a variable cost (which instead depends on the quantity of
containers transported only). A container shipping industry is formally defined as follows.

Definition 1 A CSI is a triple I = (N, p,{Sn, On, Vn tnen) with
e aset N={1,...,n} is of n > 2 carriers,
e g price functionp: R, — R

e a capacity S, = [0, k,] C R with a cap k, > 0 for each n € N;

a variable cost function v, : S,, — R for eachn € N;

a stand-alone fixed cost ¢, € R for eachn € N.

2.2 VSA-configurations

A VSA-configuration is a structure of vessel sharing agreements within a CSI. As vessel sharing
agreements usually contain some exclusivity clauses, it is natural to model a VSA-configuration as
a partitions of the set N of carriers and to interpret a block of that partition as a set of carriers
that have jointly signed a vessel sharing agreement. A block of a VSA-configuration will be also
alternatively called a VSA (namely, a vessel sharing agreement). A singleton in a VSA-configuration
is viewed as a degenerate VSA.

Definition 2 Let N = {1,...,n} be a set of carriers. The set of all VSA-configurations for
N s set
N

of all partitions of N. A partition C of N is called a VSA-configuration and a block in C is
called a VSA: when C is a singleton we speak of a degenerate VSA (otherwise, we speak of a
non-degenerate VSA) and when C is neither a singleton nor the entire set of carriers we speak of



a proper VSA (otherwise, we speak of a non-proper VSA). For each VSA-configuration C € N

we denote by
By
the VSA—i.e., the block in C'—to which carrier n belongs under C. For each carrier n € N and

for each VSA-configuration C' € N, the measure of block-internal weight of n relative to C
18 the real number ,ug defined by

c Kn
o — (1)
" ZZGB,?HI

Example 1 clarifies the notation adopted by presenting a specific VSA-configuration and a
specific VSA and by computing the measure of block-internal weight of a specific carrier of that
VSA relative to that VSA-configuration.

Example 1 Let N ={1,2,3,4,5,6,7,8,9} be a set of carriers. The partition

C= {{1’ 9}7 {2}’ {37 4, 6}7 {5’ 7}7 {8}}

is one of the many possible VSA-configurations in N'; the block {3,4,6} is one of the five VSAs in
C'; the VSA to which carrier 4 belongs under C' is the block Bf = {3,4,6}. Supposing that k3 = 15,
kg = 30, kg = 55, then u§ = 3/10 as

- 30
M = 15130 +55°

2.3 A measure of concentration

Many measures of concentration used in industrial organization theory (like, e.g., the Herfindahl
index) are real-valued functions that endow N with a total preorder. The “more concentrated
than” used in [17] endow N with a partial order and allows for the pairwise incomparability of
VSA-configurations.

Definition 3 Let N = {1,...,a} be a set of carriers and let (C°,C*®) be a pair of VSA-configurations
in N'. We say that C* is more concentrated than C° iff each VSA in C° is contained in some
VSA in C*® and we write C° C C*°.

The pair (N, C) is known to be a bounded partial order relation on A and hence a reflexive,
transitive and antisymmetric binary relation on N with a greatest element and a least element.

Definition 4 Let N = {1,...,n} be a set of carriers. The VSA-configuration
{{1,...,n}}
is the greatest element of the partially ordered set (N',C). The VSA-configuration

{1}, ... {n}}

is the least element of the partially ordered set (N',C) and is henceforth called the Cournot VSA-
configuration.



In general, the binary relation C is not a total order and two VSA-configurations might well be
incomparable through C. Example 2 illustrates the point.

Example 2 Let N = {1,2,3,4,5,6,7,8,9} be a set of carriers and consider the VSA-configurations

C° ={{1,4},{2,6,7},{3}.{5,8},{9}}, C°*={{1,4,9},{3},{2,5,6,7,8}}

and
C* =1{{1,3,4,9},{2,5,6,7},{8}}

in N'. The VSA-configuration C® is more concentrated than C°. However, neither C® is more
concentrated than C* nor C* is more concentrated than C®.

2.4 VSA-system

Given a CSI, we can get a formal description of a VSA-system by specifying how a carrier’s fixed
and variable costs depend on all possible VSA-configurations.

Definition 5 A VSA-system ¥ is a pair (I,®) where I is a CSI specified as in Definition 1 and
where ® is a set

{65} n.cyen s

of configuration-dependent fixed costs such that for alln € N:

e ¢ € R for all C € N;

o phtrl) _

Remark 1 The hypothesis that cbil{l}"“’{ﬁ}} = ¢, for all n € N is just a consistency condition but
s immaterial for the validity of the results of this paper.

2.5 Operation and profits in a VSA-system

Consider a VSA-system ¥ = (I, ®) and suppose that its carriers commercially produce a vector
(s1,...,5r) of quantities of transportation service. The VSA-configuration of the CSI-industry I
of that system is immaterial as to the revenue of a carrier, say n, in N: such a revenue is

p(ZleNsl) *Sp

no matter what fraction of s, commercially managed (namely, commercially produced) by a carrier
n is operated (namely, transported) by other carriers of the industry. VSA-configurations—and
the way they discipline how quantities are operated by carriers—are instead important in the
specification of costs. About fixed costs we have merely assumed that they are real numbers and
we only have imposed a reasonable consistency condition: other reasonable assumptions might be
reasonably imposed but they are just immaterial for the analysis conducted here. The specification
of variable costs—which is instead crucial to the understanding of how vessel sharing agreements



work—mneeds a longer explanation.® Now, suppose a VSA-configuration C in N is formed. Assuming
a homogeneous distribution of production over time,” the vessel sharing agreement signed by carrier
n implies that the aggregate quantity of transport service

ZleBgsl

commercially managed by the members of Bg is operated by each of them proportionally to the
quantity of capacity contributed to that VSA (namely, proportionally to BS ): such a proportion
is the real number u$ specified in (1). Therefore, the quantity operated by carrier n is

C
Hn - ZleBnCSl (2)

and hence the associated variable cost of carrier n is

C
Un (i, - ZleBgsl)-

It is noted that vessel sharing agreements do not involve a change of property of the ships owned
by n and hence they do not entail a change in the technology—and hence in the variable cost
function—of carrier n, which continues to face a variable cost function v,,. Carrier n’s total cost is
thus

by + vnpg, - Y jepes)

and, consequently, carrier n’s configuration-dependent profit is

p(ZleNsl) *Sn — ng - Un(ﬁ‘g ’ ZleBg‘Sl)' (3)

Remark 2 Consider a VSA-system ¥ = (I,®). It is explicitly remarked that, for alln € N, the
quantity operated by carrier n specified in (2) satisfies the inequalities 0 < uS - ZleBgsl < Kkyp and
that each carrier i € BS operates the fraction
Rj
ZZGBg K
of quantity s, commercially managed by the carrier n € Bg and hence that

%)

0< “8n <K
ZleBﬁ”l
and
Siene = —
< BC - Sy = Sp.
= ZleBS“l

This remark clarifies that the accounting of the quantities operated and commercially managed by
carriers is consistent. It is observed, also, that when C is the Cournot configuration—put differently,
when Bf = {I} for alll € N—carrier n’s profit can be expressed by p(>,cns1) = Sn — dn — Un(sn)
in that u& = 1 and carrier n’s profit coincides with the usual specification of the profit of a firm
of a Cournot oligopoly when C' is the Cournot configuration. A VSA-system is thus a proper
generalization of a Cournot oligopoly.

6See also [17] for a discussion on variable costs.
"See again, Sections 2 and 4.2 in [17] for a discussion of this assumption.



Example 3 illustrates, numerically, the difference between the quantity of liner service commer-
cially managed by a carrier in a VSA and that operated by a carrier in a VSA.

Example 3 Consider a VSA-system (I,®) with N = {1,2,3,4,5,6} and
Sn = 10,10 - n]
for alln € N and consider a VSA-configuration
C={{1,2,3},{4,6},{5}}

for 3. Then

(uf, 1§, 1§) = (1/6,1/3,1/2).
Assume that each carrier n commercially produces a vector s = (si,...,S6) of quantities of trans-
portation service with s, =2 -n+6 for alln € N. Then

(81, S92, 53) = (8, 10, 12)

and hence the quantity of liner service commercially managed by carrier 1 (respectively, 2 and 3)
is 8 (respectively, 10 and 12). The generic entry A;; of the 3 X 3 square matriz A specified by

1 1 1
?8 ?10 §-12
l.s 110 1.12

1s the quantity operated—namely, transported—yby carrier i of liner service commercially managed—

namely, commercially produced—by carrier j. It is readily verified that
Z?:lAij = MZC : ZlerSl for alli € {1,2,3}

and so Z?:1Aij is the quantity /J,Z-C'ZleBC s; operated—namely, transported—by carrieri € {1,2,3}
according to the vessel sharing agreement. Likewise, it is readily verified that

Z?:1Aij =s; for all j € {1,2,3}
and so Z?:1Aij is the quantity s; commercially managed—namely, commercially produced—by
carrier j € {1,2,3}.
2.6 VSA-games and equilibria

A game G is a triple (N, {Sy}nen, {tn}tnen) where: N = {1,...,n} is a finite set with n > 2
players; S, is a nonempty set of player n’s strategies; player n’s utility function w,, is a real-valued
function on the joint strategy set

Given a game G and a pair (n,s) € N x S, we put s_n = (1)1 n\ 1} and
S—n = Tlien\(nySt>

8



we denote the joint strategy s by (sn,s_,) and we call player n’s conditional utility function on
S_p the function uy (-, s_,) : S, — R specified by

Un(+5 8—n)(Sn) = Un(Sn, S—n).

A Nash equilibrium for a game G is a joint strategy e € S satisfying the implication s, € S, =
Up, (€) > up(sp,e—p) for all n € N. When strategy sets are subsets of R, the sum e; + ...+ ej of all
components of a Nash equilibrium e for G is sometimes called an equilibrium aggregate. Recalled
the basic definitions of a game and of a Nash equilibrium, we associate a game of oligopolistic
competition to each possible VSA-configuration. The associated game—where utility functions are
specified by the configuration-dependent profit obtained in (3)—will be called a VSA-game.

Definition 6 Let X be a VSA-system specified as in Definition 5. For each VSA-configuration C
in N, the VSA-game associated to C under X is the game

(Nv {SH}HGN’ {Ug}neN)

where N is the set of carriers and, for all n € N, player n’s strategy set S, is carrier n’s capacity
and player n’s utility function uS is the real-valued function on the joint strategy set S specified by

ug(s) = p(ZleNsl) *Sn T ¢g - Un(ﬂg : ZlngSI)c

The wutility function ug 1$ also called carrier n’s configuration-dependent profit function.
Remark 3 clarifies the connection with [1, Definition 1]’s aggregative games.

Remark 3 Consider a VSA-system and a VSA-configuration C' with a proper VSA containing a
carrier n. Consider the profit function ug specified as in Definition 6. Assume that v, strictly
increasing and pick arbitrary i € Bg\{n} and | € N\Bg. Denote by w the zero vector of R™ and
by w® (by w® ) the vector in R™ whose i-th (whose I-th) component equals max S; (equals max S;)
and where all other components are zero. Suppose the existence of a pair (g,11,) of functions with
g:S—=RandIl, : S, xg[S] — R such that g is continuous on the Cartesian product S and strictly
increasing in each of the i arguments. It is not difficult to see that the equality uS (s) = I, (sp, g(s))
cannot hold for all s € S and hence that the game VSA-game associated to C' under ¥ cannot be
an aggregative game in the sense of [1, Definition 1]. To see this, note that the assumption that
g is strictly increasing in every argument ensures that min{g(w®), g(w®)} > g(w) and—by basic
topological reasons—the continuity of g in turn implies the existence of a pair (s°,s%) € S x S such
that
s; > 0=s; for all j € N\{i} and s} > 0= s} for all j € N\{l}

and that

Clearly, 55 = s% = 0. If the equality uS(s) = M, (sn, g(s)) were true for all s € S, then we should
have

up, (5°) = a(sy, 9(s%)) = Ma(0, g(5°)) = (0, 9(s%)) = a(sy, g(s*)) = ug (s°)

in contradiction with the fact that the strict increasingness of v, implies

Uy (5°) = =y, — valp - 57) <~y — va(0) = i (s°).



3 Price functions, derived notions and conditions thereon

The notion of price function has already been used in the context of a CSI. A general definition
thereof—independent of that of an industry—is here given.

Definition 7 A price function is a function from Ry to R.

The remainder of Sect. 3 provides the definitions of some notions associated with that of a
price function and recalls a definition of generalized convexity that will be often imposed on one of
them in the rest of the paper.

3.1 Derived notions

The domain of the revenue function specified in Definition 8 is—like in the case of a price function—
the entire R, while the domain of the three functions specified in Definition 9 is R4 : the reason
of this choice is essentially technical.

Definition 8 Let p : Ry — R be a price function. The revenue function associated to p is
the function r : Ry — R specified by

It is observed here, that one can always handle standard specifications of a price function (e.g.,
the specification p(x) = 1/y/x) that are well-defined only on Ry by assigning an arbitrary real
value of p at 0 (e.g., by putting p(0) = 1 when p(z) = 1/y/z for all positive x): this arbitrary
imposition makes r vanishing at 0, which is clearly a reasonable condition (continuing with the
previous parenthetical example, whatever the specification of p at 0, the revenue function r is well-
specified on the entire Ry by r(z) = y/z). Before introducing additional notions associated to that
of a price function, it is explicitly observed that in this paper we put

Zy=1{0,1,2,3,...}
and hence that Z, is the set of all nonnegative integers.

Definition 9 Let p : Ry — R be a price function that is continuous on Ryy and let (z,7) €
Z+ X R+.

o The normal primitive price function associated to p is the function P : Ry, — R such
that
P(1) =0 and DP(x) = p(x) for allx € Ry .

e The augmented revenue function associated to p and (z,7) is the function RZ : R, —
R specified by
R: (z)=plx+71) - z+Plx+71)- 2.

10



o The price elasticity associated to p is the function E : Ry — R specified by

_ Dp(x)

El=) p(z)

provided p is nonvanishing on Ry and differentiable on Ry, .

It is remarked that RY(z) = r(z) for all z € R, and hence that R] in fact coincides with the
restriction of r to R4 .

3.2 Semistrictly demiconcave augmented revenue

This Section 3.2 recalls a notion of generalized concavity introduced in [13]: see the Introduction of
the mentioned article for antecedents. Before providing the definition of semistrict demiconcavity,
it is worth to clarify that in this paper a real interval is said to be proper when it is infinite.

Definition 10 A continuous real-valued function f on a proper real interval L is semistrictly
demiconcave iff there exist two (possibly empty) real intervals Ly and Lo such that: Ly U Ly = L
and Ly N Ly = 0; x <y for every pair (x,y) € L1 X La; f is strictly concave on L1 and decreasing
on Lo.

Proposition 1 recalls some important facts concerning semistrict demiconcavity: the reader is re-
ferred to Section 2.2-3 in [13] for a proof of Proposition 1.

Proposition 1 Let f and g be continuous real-valued functions on a proper real interval L.

1. If f is semistrictly demiconcave, then f is quasiconcave.

2. If f is semastrictly demiconcave and g is increasing and convex, then f — g is semistrictly
demiconcave.

3. Suppose L is open and f is differentiable. Then f is strictly demiconcave if and only if the
implication

Df(z)>0= Df(y) > Df(x)
holds true for every pair (x,y) € L X L such that y < x.

The main result of this work imposes semistrict demiconcavity on each augmented revenue
functions in the precise sense of Definition 11.

Definition 11 Let p : Ry — R be a price function that is continuous on Ryy. We say that
each augmented revenue function RZ is semistrictly demiconcave iff RZ is semistrictly
demiconcave for every pair (z,7) € Zy X R

Proposition 2 provides a convenient characterization of the strict demiconcavity of an augmented
revenue function. Proposition 2 follows directly from part 3 of Proposition 1 and its obvious proof
is thus omitted.
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Proposition 2 Let p: Ry — R be a price function that is differentiable on R4 and let (z,7) €
Zy+ x Ry. Assertions I and II are equivalent .

1. RZ s semistrictly demiconcave.
II. DR:(z) > 0= DRZ(x —w) > DRZ(x) for every (w,z) € Ry4 x Ryt such that w < x.
Remark 4 contains a useful observation.

Remark 4 Let (w,z,2,7) € Ry xRy xZy xRy withw < x and put y, = x+7. The derivatives
DRZ(x) and DRZ(x — w) in Proposition 2 can be expressed by

DRZ(x) = Dp(yz) -« + p(yz) - (2 + 1)
and
DRI(z —w) = Dp(yo —w) - (x —w) + p(yo —w) - (z + 1).

4 Main assumptions

In this Section 4 we introduce all the relevant definitions concerning VSA-systems and VSA-
configurations that are used as assumptions in the analysis of the equilibrium structure and welfare
properties conducted in Section 5. Henceforth, given a function f : X — R on a proper real interval
X, we denote the right upper Dini derivative of f at € X\{sup X} by D f(z) and by D~ f(x)
the left upper Dini derivative of f at x € X\{inf X}: when f is either convex or right differentiable
at x € X \{sup X}, the derivative D7 f(z) is the right derivative of f at z; when f is convex or left
differentiable at € X \{inf X'}, the extended real number D~ f(z) is the left derivative of f at x.
When f is differentiable at z in the interior of X, we write D f(z) to denote the derivative of f at
x.

4.1 Convex VSA-systems

The basic assumption employed in the analysis of this paper is the convexity of a VSA-system, in
the precise sense of Definition 12. Appendix A contains a discussion on condition H4 and shows
sufficient conditions for the validity of conditions H4. Furthermore, Appendix A contains several
examples of price functions that satisfy conditions H1-4.

Definition 12 Let X be a VSA-system. The VSA-system Y is said to be a convex VSA-system
H1. the price function p is differentiable on Ry, ;

H2. the inequality Dp(z) < 0 holds for all x € Ry ;

H3. the revenue function r is continuous;

Hy. each augmented revenue function RZ is semistrictly demiconcave;

H5. each variable cost function v, is continuous;

H6. each variable cost function v, is convex and strictly increasing.

12



4.2 Active VSA-systems

The activeness of a VSA-system essentially requires that the inactivity of all carriers—namely, zero
production of liner service by any carrier—does not constitute an equilibrium state when all vessel
sharing agreements are degenerate.

Definition 13 Let X be a VSA-system. The VSA-system 3 is said to be an active VSA-system
iff conditions H1, H2, H6 hold and

lim, 50 p(z) > min{D% v (0),..., D% v (0)}.

4.3 VSA-systems with almost linear costs

The following condition imposes an upper bound to the “degree of convexity” of variable costs
functions by requiring that the left-hand derivative of each (convex and strictly increasing) variable
cost function v, at the cap k, is not greater than®

K1+ -+ Kk — min{ky,..., Kz}

(4)
times the right-hand derivative of v, at 0.

Definition 14 Let 3 be a VSA-system. The VSA-system X is said to be a VSA-system with
almost linear costs iff condition H6 holds and each variable cost function v, satisfies the inequality

K1+ -+ Kp

D™ vy, (k) < :
n () < K1+ -+ Kz —min{ky,...,kz}

-DTv, (0).

4.4 VSA-systems with normal price functions

The condition of normality of price function postulates the continuity of a price function bounded
from above.

Definition 15 Let ¥ be a VSA-system. The VSA-system ¥ is said to be a VSA-system with
a normal price function p iff conditions H1, H2 hold and lim,_,op(x) = +oo when p is not
continuous at zero.

4.5 Almost smooth configurations

The almost smoothness condition is a technical assumption that will be used to ensure the unique-
ness of an equilibrium. We note here that such condition is satisfied by every Cournot configuration
and that it is satisfied also when all carriers of a CSI except at most one have variable cost functions
that are differentiable on the interior of their domain.

Definition 16 Let ¥ be a VSA-system. A VSA-configuration C in N is almost smooth iff
in each block B in C all carriers in B except at most one have variable cost functions that are
differentiable on the interior of their domain.

8The real number in (4) is always strictly larger than 1.

13



4.6 Some remarks

Conditions H1 and H2 imply that p is strictly decreasing on R and hence the limit in Definitions
13 and 15 is a well-defined extended real: in particular, that limits exist in R U {+o0}. Condition
H6 implies that Dt v, (0) exists in Ry and that D~ vy, (k,) exists in Ry U {4o00}: as 7 > 2 and
each k, is positive by assumption, a moment’s reflection shows that the almost linearity condition
stipulated in Definition 14 implies that D" v, (0) and D~ v, (k,,) exists in R 4.

5 Equilibrium analysis

Section 5 examines the equilibrium structure of a convex VSA-system and provides an ordinal
comparative statics analysis of the effects of an increase in the concentration of a VSA-configuration.

5.1 Equilibrium structure

Theorem 1 proves the existence, uniqueness and positivity of an equilibrium aggregate in any convex
VSA-system and provides sufficient conditions for the positivity of the unique equilibrium price and
for the uniqueness of an equilibrium in the strict sense. Corollary 1—which follows directly from
part 3 of Theorem 1 and whose proof is omitted—is a particular consequence of part 3 of Theorem
1 on the uniqueness of an equilibrium.

Theorem 1 Let X be a convex VSA-system and let C be a VSA-configuration in N .

1. There exists at least one Nash equilibrium e for the VSA-game associated to C' under 3.

2. There exists exactly one Nash equilibrium aggregate n for the VSA-game associated to C under
Y. Furthermore, the strict inequalities n > 0 and p(n) > 0 hold true if ¥ is active.”

3. There exists exactly one Nash equilibrium e for the VSA-game associated to C under ¥ if C
is an almost smooth VSA-configuration.

Proof. 1. By virtue of parts 1 and 2 of Theorem 3, a routinary application of a known Nash equi-
librium existence result—use, e.g., [9, Theorem 7.4]—ensures the existence of a Nash equilibrium
for the VSA-game associated to C' under 3.

2. By virtue of Theorem 6, we need to prove only the first sentence of part 2 of Theorem 1. Part
1 of Theorem 1 ensures the existence of at least one Nash equilibrium—and hence of at least one
Nash equilibrium aggregate—for the VSA-game associated to C. Suppose €” is a Nash equilibrium
for the VSA-game associated to C under ¥ and suppose e is a Nash equilibrium for the VSA-game
associated to C' under . Put n® = €] +---+e€L and < = e +- - - +e¢3. Furthermore, put C* = C
and C< = C. Obviously, C* C C< and C< C C”. As e” is a Nash equilibrium for the VSA-game
associated to C* under ¥ and e< is a Nash equilibrium for the VSA-game associated to C< under

9Clearly, the weak inequality 7 > 0—but not the weak inequality p(n) > 0—is true whether or not the convex
VSA-system X is active.
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¥, part 1 of Theorem 4 implies that n~ < n< and n¥ < n”. Consequently, n® = 1~ and hence
there exists exactly one Nash equilibrium aggregate for the VSA-game associated to C' under X.

3. Assume that C' is an almost smooth VSA-configuration. Part 1 of Theorem 1 ensures the
existence of at least one Nash equilibrium e°® for the VSA-game associated to C under X and part
2 of Theorem 1 ensures that e] +...+ej = e} + ... +ej for any other Nash equilibrium e® for the
VSA-game associated to C' under . Consequently, there exists exactly one Nash equilibrium for
the VSA-game associated to C under ¥ by Theorem 5. m

Corollary 1 Let X be a convex VSA-system and let C be a VSA-configuration in N .

1. There exists exactly one Nash equilibrium e for the VSA-game associated to C under ¥ pro-
vided C' is a Cournot configuration.

2. There exists exactly one Nash equilibrium e for the VSA-game associated to C under % pro-
vided at most one carrier n in N has a (stand-alone) variable cost function v, that is not
differentiable on (0, Ky).

5.2 Equilibrium welfare

Theorem 2 proves that in any convex VSA-system with almost linear costs an increase in the
concentration of the industry generates beneficial effects for consumers: it increases the unique
equilibrium aggregate (part 1 of Theorem 2) and, when either the price function is normal or the
VSA-system is active, it decreases the unique equilibrium price (part 2 of Theorem 2). and yields
an increase in consumer welfare (Corollary 2).

Theorem 2 Let 3 be a convex VSA-system with almost linear costs and let (C°,C*®) be a pair of
VSA-configurations in N such that

C°CC°.
There exists at least one Nash equilibrium e° for the VSA-game associated to C° and there exists
at least one Nash equilibrium e® for the VSA-game associated to C*. Put n®° =e] + ...+ ey and
n*=el+...+ep.

1. n° < n°.

2. p(n®) < p(n°) if X is either a VSA-system with a normal price function or an active VSA-
system.

Proof. Part 1 of Theorem 1 ensures the existence of at least one Nash equilibrium e° for the
VSA-game associated to C° and of at least one Nash equilibrium e® for the VSA-game associated
to C*. Part 2 of Theorem 4 ensures the validity of the inequality n° < n®. Clearly, 0 < 7n° as
pointed out in fn. 9. This proves part 1 of Theorem 2. Henceforth assume that X is either a
VSA-system with a normal price function or an active VSA-system. If p is continuous on R4, then
the validity of conditions H1 and H2 entails the strict decreasingness of p on R, and hence that
p(n®) < p(n°) by part 1 of Theorem 2. If p is not continuous, then the normality of p implies that
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(p is not continuous at 0 by virtue of assumption H1 and hence that) the limit lim,_,o p(z) = +oo:
the validity of such limit in turn implies that lim,_,o p(x) > min{D%v;(0),..., D" v;(0)} and hence
that 3 is active. Consequently, when p is not continuous, Theorem 6 ensures that 0 < n° < n® and
from the last two inequalities we infer that p(n®) < p(n°) by virtue of conditions H1 and H2. m

Corollary 2 proves that in any active convex VSA-system with almost linear costs an increase in
the concentration of the industry generates beneficial effects to consumers by yielding a nonnegative
consumer surplus variation, which is defined as follows. Suppose for a moment that p : Ry — R
is a price function of a VSA-system that is decreasing on the interior of its domain and pick an
arbitrary pair (e°,e®) of vectors in [0, k1] X -+ X [0, k5] such that n° < n® and that 0 < p(n®) with
1° and n® defined by ° = €] + ... + ¢ and n* = e} + ... + e5: we henceforth refer to the real
number Agp(e®, e®) specified by

Agp(e®,e®) =r(n°) —r(n®) + [ p(z)dz

as to the consumer surplus variation from e° to e°.

Corollary 2 Let ¥ be an active convex VSA-system with almost linear costs and let (C°,C*) be a
pair of VSA-configurations in N such that

c°C .

Pick an arbitrary Nash equilibrium e° for the VSA-games associated to C° under X3 and by e® an
arbitrary Nash equilibrium for the VSA-games associated to C® under Y. Then

0 < Agp(e’,e®)
(where p is the price function of the VSA-system X).

Proof. Put n° =e{+...+e2 and n®* =€} +... 4+ €. Then 0 <7° <7®* and 0 < p(n*) < p(n°) by
Theorems 2 and 6. Clearly, p is strictly decreasing (and hence positive) on the possibly degenerate
real interval [n°,n®] by virtue of conditions H1 and H2. Consequently,

p(x) —p(n®) >0 for all z € [n°,7°]. (5)
Asr(n°) =p(n°) -n° and
r(n®) =p(®) - 1* = p(n®) - n° + [ p(n®)da,

we can express Agp(e®,e®) as the sum of the nonnegative real number (p(n°) — p(n®)) - n° and of
the nonnegative real number f:o (p(z) — p(n®))dx. Needless to say, the previous conclusions follow
from the assertion in (5) and from the inequalities inferred at the beginning of this proof. m
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5.3 On almost smoothness and almost linearity

Example 4 shows that, in part 3 of Theorem 1, the almost smoothness condition cannot be simply
dropped.

Example 4 Putting N = {1,2}, consider the CSI

I = (N, P, {Sn}nENa {d)n}nGN, {Un}nGN)

with a price function specified by
p(z) =40 — 4x

where S, = [0,5] and

on() = 30x ife <1
) 592 —29 difa > 1

for allm € N. Suppose, for instance, that ¢, = % for alln € N and consider then the VSA-system
Y = (I,®) where, for instance,

5
C C
¢n 72}[71/

for allm € N and all C € N'. The VSA-system X is an active convexr VSA-system with a normal
price function and with almost linear costs. Having observed this, put

C={{1,2}}

and note that the VSA-configuration C for the VSA-system ¥ is not an almost smooth VSA-
configuration. It is readily checked that the vector e* and e** specified by

e* = (81/80,79/80)

and

e** = (79/80,81/80)

are distinct Nash equilibria for the VSA-game associated to C under ¥ and hence that there exists
a multiplicity of equilibria.

By making use of Example 4, Remark 5 shows the difficulty for our analysis of the equilibrium
structure to make use of the theory of potential games started with [12].

Remark 5 Letting w: [0,5] — R be the function specified by

30z ife <1
m(x) = .
59x — 29 ifx > 1

reasoning as in Proposition 2 in [{], one can readily prove that the VSA-game associated to C' under
Y in Example 4 is an (exact) potential game with a potential I1 : S — R specified by

5
I(s) = 40(s1 + s9) — 4(s? + 554 51 - 52) — 1 m(s1/2 4 52/2).
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Therefore, the game in Example 4 admits a potential: even more, such a potential is strictly concave.
Noting that arg max Il = {(1,1)}, it should be clear from Example 4 that the mazximization of the
potential does not provide a description of the entire set of equilibria. This observation shows that,
even by imposing more restrictive assumptions on the price and cost functions, the attempt to convey
the class of games considered here into the class of games with an exact potential (or into some
generalization thereof such as [8]" pseudo-potential) does not simplify the analysis of the structure
of equilibria in that the mazximization of the potential might disregard some equilibria even when
price functions are linear and cost functions are piecewise linear.

5.4 On almost linearity

Example 5 shows that, in Theorem 2 and Corollary 2, the condition of almost linearity of cost
functions cannot be simply dropped.

Example 5 Putting N = {1,...,31}, consider the CSI

I= (N, b, {Sn}n€N7 {d)n}neNa {Un}nGN)
with a price function specified by
p(z) =100 — x
where Sy, = [0,1] and vy(x) =z for alln € {1,...,30} and where S3; = [0,30] and

(@) 20-x if ¢ < 26,
v ) =
31 44-7 — 624 ifx > 26.

Suppose, for instance, that ¢, = 10 for all n € {1,...,30} and that ¢31 = 300 and then consider
the VSA-system ¥ = (I, ®) where
O =10+ - piy]

for allm € N and all C € N (where k,, is the mazimum of S, for alln € N). The VSA-system
3 is an active conver VSA-system whose price function is normal and any VSA-configuration for
Y is an almost smooth VSA-configuration. However, the VSA-system X is not VSA-system with
almost linear costs. Having observed this, put C° = {{1},...,{n}} and C* = {{1,...,n}} and note
that

CcC°CC°.

By part 2 of Corollary 1 there exists exactly one Nash equilibrium e° for the VSA-game associated
to C° under X: this equilibrium is specified by €5, =1 for allm € {1,...,30} and by

egl = 25.

By part 2 of Corollary 1 there exists exactly one Nash equilibrium e® for the VSA-game associated
to C* under X: this equilibrium is specified by e =1 for allm € {1,...,30} and by
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Putting n° = e} + ... +e3; and n®* = el + ... + €3y, it is readily checked that
54 =n®* <n° =55

and that
45 = p(n°) < p(n*) = 46.

Finally, it is readily checked that

—54.5 = Asp(eo,e.) < 0.

6 Final discussion

We have presented a model of competition between the carriers of the container shipping industry
under general hypotheses on the demand and supply side that relax the assumptions of a previous
model in [17] with strictly concave revenue functions and linear cost functions. We have examined
the equilibrium structure of this model and derived a comparative statics analysis from it. The
relaxation of linearity assumptions on costs has drastically changed the structure of strategic in-
teraction between the carriers and has required a non-obvious reappraisal of the proof technique
needed to handle equilibrium problems that cannot be reduced to 1-dimensional ones.

Confirming and generalizing previous results on the structure of equilibria, we have shown how
the nonlinearity of convex costs can have anti-competitive implications on consumer welfare, which
were absent in the linear case. From our analysis it thus emerges that, in the presence of “highly”
convex variable costs (due, for example, to the presence of carriers with highly heterogeneous fleets
in terms of transportation efficiency), the formation of vessel sharing agreements can generate price
increases. The last example of the paper has shown that this can occur even in the presence of
elementary linear price functions and all but one firms with linear costs. Our present results thus
confirm and generalize the previous analysis in [17] but at the same time shows that the relaxation
of cost linearity beyond the condition that we have called “almost linearity” is compatible with
anti-competitive effects.

From a mathematical point of view, the main novelty of this work was to offer a proof technique—
based on a particular dichotomy described first in the Abstract—to prove equilibrium uniqueness
and to perform comparative static analysis in games of competition among carriers that satisfy a
weak form of aggregativity but that cannot be bear classified as aggregative games (at least, in
the usual sense). Theorem 4 uses this technique and all the main results of this work are based on
that result. A less sophisticated version of it, which relies on the simple dichotomy of the set of
all players in a group consisting of those who increase their equilibrium strategy in the transition
between two equilibria with different equilibrium aggregates and the group of all remaining players,
has already been used in the context of certain types of aggregative games: see, e.g., [13] and
the references therein. This less sophisticated technique cannot be used in the present context.
This paper has shown that the more refined dichotomy formed by the set Z defined in the proof
of Theorem 4 and by its complement to the set of all players can instead be fruitfully employed
in the present context. It would be interesting to examine the applicability of the new technique
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to other classes of games that—though non-aggregative in the usual sense—satisfy weak forms of
aggregativity.

7 Appendix

7.1 Appendix A: On condition H4

It is here shown that the class of price functions considered in this work subsumes and expands the
class used in [17], where attention is restricted to price functions with an associated strictly concave
revenue function. Even though Propositions 3 and 4 are essentially known, it is convenient to have
clear and simple statements that show the generality of the class of price functions considered here,
as well as some illustrating examples. Proposition 3 is in fact a variant of part 1 of Proposition 4.3
in [13] that dispenses with unnecessary assumptions on the positivity of p imposed in that article:
it is observed that a strictly decreasing linear function cannot be positive everywhere and hence
the relaxation of that positivity assumption is important if, in our analysis, we want admit also the
elementary class of all strictly decreasing linear price functions.

Proposition 3 Suppose p : R — R is a price function satisfying condition H1. If the revenue
function r is strictly concave, then conditions H2 and H4 are satisfied.

Proof. Assume that the function r : Ry — R is strictly concave. Lemma 1 in [17] ensures
that condition H2 is satisfied and hence that p is strictly decreasing on R;;. Consequently, P is
strictly concave. Fix an arbitrary pair (z,7) € Z; X Ry. The function g : Ry — R specified by
g(x) = z- P(x + 7) is concave because P is strictly so and because z is a nonnegative integer. As
RY(x) = p(x +7) - for all z in the domain R, , of RY, Lemma 1 in [17] implies that R? is strictly
concave when 7 > 0. When 7 = 0, the strict concavity of R is an immediate consequence of the
assumption that 7 is strictly concave in that RY(z) = r(z) for all z in the domain R of R). As
the sum of a strictly concave function and a concave function is strictly concave, the observation
that R? = R? + ¢ implies that R? is strictly concave and we are in a position to conclude that
condition H4 is satisfied. m

Remark 6 recalls a connection between the concavity of a strictly decreasing price function and
the strict concavity of the revenue function. In the literature on Cournot equilibrium, the condition
of strict concavity of the revenue function has been used in the [16].

Remark 6 Suppose p: Ry — R is a strictly decreasing price function. If p is concave, then the
revenue function r is strictly concave.'® As is clear from the first specification in Example 6, the
converse of the previous implication is generally false.

1076 see why, suppose p is concave and strictly decreasing and, by way of contradiction, suppose r is not strictly
concave. Then there exists (A, z°,z°%) € (0,1) x Ry x Ry such that

rA-z°+ (1 =X -2°)<A-r(x°)+(1—-X)-r(z°) (6)
and z° # x*. Without loss of generality, suppose z° < x*. Tt is readily seen that

0<A-(1=X)-(z* =2 - (p(z°) — p(z*)) (7)
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Example 6 provides some instances of price functions whose associated revenue function is
strictly concave. In Example 6, the specification of p(0) is immaterial and can be arbitrarily chosen
by the reader.

Example 6 Let (a,3,7) be a triple of real numbers with B and = positive. Any price function
p: Ry — R specified at all x > 0 by

p(a) = a+B-a 71 (9)
as well as by
plx)=a—pB-27 (10)
or by
p()=a+ -2 (11)

possesses an associated revenue functions that is strictly concave. In particular, each of the previ-
ous specifications makes p and r satisfy all conditions H1—4. It is observed that any price function
p specified on Ry as in (9) is not continuous—even though the associated revenue function is
continuous—and that, when o > 0, the associated price elasticity is not decreasing: this last obser-
vation proves that the strict concavity of r does not imply the decreasingness of E. Finally, it is
observed that the class of price functions specified in (10) includes the class of all strictly decreasing
linear price functions discussed above.

Proposition 4 follows, essentially, from part 3 of Proposition 4.5 in [13]. Proposition 4 is
explicitly proved here for the sake of completeness and readability. In the literature on Cournot
equilibrium, the condition of decreasingness of the price elasticity has been used in the [14].

Proposition 4 Suppose p : Ry — R is a price function satisfying condition H1 and H2 that is
positive on Ry . If the price elasticity E is decreasing, then condition Hj is satisfied.

Proof. Assume that the price elasticity E is decreasing and, by way of contradiction, suppose
condition H4 is not satisfied. Proposition 2 ensures the existence of a quadruple (w,x,z,7) €
Ryt x Ryp x Zy x Ry such that w < z, that DRZ(x) > 0 and DRZ(x — w) < DRZ(x). Put
Yz = x+7. It is clear from Remark 4 that the inequality DRZ(z) > 0 can be equivalently rewritten
as

Dp(yz) -z +p(yz) - (2 +1) >0 (12)

and that the inequality DRZ(z — w) < DRZ(z) can be equivalently rewritten as

Dp(yz —w) - (x —w) + pyz —w) - (2 +1) < Dp(yz) -« + p(y) - (2 +1). (13)

by the strict decreasingness of p. Put 6 = A-2° + (1 — X) - 2°. Clearly, > 0 as A € (0,1) and 0 < 2° < z°. Observe
that

§-p(A-a2® + (1 =X)-2%) <6-(A-pa”) + (1= A)-pa®)) (8)
as the left-hand (right-hand) side of the inequality in (8) is the sum of the left-hand (right-hand) sides of the
inequalities in (6) and (7). Consequently, p(A-z°+ (1 —X)-z*) < A-p(z°)+ (1 — ) - p(z®) in contradiction with the
concavity of p.
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As 0 < w < yg, the positivity and the strict decreasingness of p on R 4 imply p(y, —w) > p(yz) > 0:
from (12) and (13) we then infer that

Dp(ye —w) - (@ —w) +plya —w) - (z+ 1) _ Dpye) &+ p(ys) - (2 +1)

P(yz — w) P(Yz)
and hence that
r—w x
E(y, —w) - < FE - —. 14
e = w) 22 < B - (14)
Put £ = ﬁy’”y—;w and note that £ > 1. The inequality in (14) implies that E(y,—w) < E(y,)-§ and

hence that E(y, —w) < E(yz) because E(y;) < 0 and £ > 1. But the inequality E(y, —w) < E(yz)
is in contradiction with the assumption that F is decreasingness. m

Remark 7 recalls a connection between the decreasingness of the price elasticity and the [2]’s
log-concavity of a price function.

Remark 7 Suppose p : Ry — R is a positive and decreasing price function satisfying conditions
H1. If p is log-concave (namely, if Inp is concave), then the price elasticity E is decreasing.'’ As is
clear from the first specification in Example 7, the converse of the previous implication is generally
false.

Example 7 provides some instances of price functions whose associated price elasticity is de-
creasing. Also in Example 7, the specification of p(0) is immaterial and can be arbitrarily chosen
by the reader.

Example 7 Let (o, 3,7) be a triple of positive real numbers. Any price function p : Ry — R
specified at all x > 0 by

pa) =0 s (15)
as well as by .

p(z) =a- 1) (16)
or by .

pa) = (17)

possess an associated decreasing price elasticities. In particular, each of the previous specifications
makes p and r satisfy all conditions Hi1—4. It is observed that any price function p specified on Ry 4
as in (15) has an associated revenue function that is not strictly concave (in fact, not even concave):
this last observation proves that the decreasingness of E does not imply the strict concavity of r.
Finally, it is observed that no price function specified on Ry as in (16) is log-concave.

"To see why, pick arbitrary z° and z* in R,y such that z° < x°. As p is positive and decreasing on its domain
R4+ and differentiable on Ry, the function Dlnp is well-defined on Ry4+ and nonpositive on R4y. The concavity
of Inp on R4y implies the decreasingness of DInp on Ry;. As Dlnp is decreasing on R4 and nonpositive on
R4+, we have that DInp(z®) < DInp(z°) < 0 and hence that E(z®) = 2* - DInp(z®) < z2° - Dlnp(z°) = E(z°) as
0 < z° < z*. We thus conclude that F is decreasing on its domain R4 4.
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To conclude, it is explicitly pointed out that the class of price functions satisfying condition H4
is by no means limited to the union of the classes of price functions that satisfy the conditions in
Propositions 3 and 4: Proposition 4.6 in [13] provides evidence of this claim.

7.2 Appendix B: Fundamental theorems

Theorem 3 Let X be a conver VSA-system and let C' be a VSA-configuration in N'. Consider the
VSA-game associated to C under X2 and suppose n € N.

1. The function uS is continuous on S.
2. The function ug(, S_n) is quasiconcave on Sy, for all s_, € S_,,.

3. The function uS (-,s_,) possesses exactly one mazimizer on S, for all s_, € S_,,.

Proof. Denote by w the zero vector (0,...,0) of R™.
1. Observe that

Sn

Ug(s)zr(81+...+8ﬁ)‘m
n

— ¢y — valpy, - ZleBg s1)
for all s € S\{w} and that
ug (W) = =0 —vn(0).

As r and v, are continuous, the first initial observation is readily seen to imply the continuity of
u¢ at all s € S\{w}. As v, and r are continuous at 0 and r is even vanishing at 0, the validity of
the inequalities

Ssingl
S1+...+ 85

for all s € S\{w} and the two initial observations imply the continuity of ul at w by virtue of the
C

., is continuous on S.

Police Theorem and by other basic facts concerning limits. Therefore, u
2. By assumption, RY is semistrictly demiconcave on its domain Ry, for all 7 € Ry : therefore, RO
is semistrictly demiconcave on S,\{0} for all 7 € R, in the precise sense that the restriction of RO
to Sp\{0} is semistrictly demiconcave on its domain S,\{0} for all 7 € R;. Observe that, for all

s € S\{w}, the value of the function u$ (-, s_,) at s, is expressed by

uS (-, 5_n)(5n) = R(sn) — ¢S — v, (1S - ZleBgSl) with 7 = ZlEN\{n}Sl’

Given this observation'?, we infer that uS(-,s_,) is semistrictly demiconcave on S,\{0} for all
s € S by virtue of part 2 of Proposition 1 and hence that uS(-,s_,) is quasiconcave on S,\{0}
for all s € S by virtue of part 1 of Proposition 1. The continuity of u$ implies the continuity of
uf (-, 5_y) on its domain S,, for all s € S and hence—see, e.g., Theorem 2.2.12 in [3]—ul(-,5_,) is
quasiconcave on its domain S, for all s € S.

3. Since S, is a nonempty compact subset of R, and since part 1 of Theorem 3 ensures the
C

“(+,s_pn) possesses at least one

continuity of ug(-,s_n) on S, for all s_, € S_,, the function u

20bserve also that the function g : S, \{0} — R specified by g(sn) = ¢S +vn (1S - > 1epc 81) is continuous, convex
and strictly increasing in that so is v,, by assumption.
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maximizer on S, by the Weierstrass Theorem. Now, by way of contradiction, suppose z* and z**
are distinct maximizers of uC'(-,s_,) on S, for some s_,, € S_,,. Without loss of generality, suppose
x* < x**. The real interval (z*,**) is a nonempty open convex subset of S,\{0} and u$(-,s_,) is
constant on (z*, x**) because uS (-, 5_,) is quasiconcave on S, by part 2 of Theorem 3 and because
z* and x** are maximizers thereof. We have already observed in the proof of part 2 of Theorem 3
that

uS (- 5-n) (sn) = R2(sp) — 65 — va(ps - Diepes) With 7=37c v\ st

for all s € S\{w} and that R? is semistrictly demiconcave on S,\{0}. By the strict demiconcavity
of R? on S,,\{0}, there exist real intervals L1 and Ly such that: L; ULy = S,\{0} and L1 N Ly = 0;
x < y for every pair (z,y) € L1 x Lo; RY is strictly concave on L; and decreasing on Ls. So, as
vp is strictly increasing and convex by assumption (see again fn. 12), the function ul(-,s_,) is
strictly concave on Lj and strictly decreasing on Lg: as the real interval (z*,2**) is a nonempty
open convex subset of S,\{0}, it is readily seen that we get a contradiction with the fact that
uS (-, s_,) is constant on (z*,2**). m

It is noted here, that both the aggregate ) ;. ze; and the aggregate ) ;. ge; in the definition of
Z given in Lemma 1 are relative to the blocks in the VSA-configuration C°. Also, it is noted here
that the sets Z and Z defined in Lemma 1 might well be empty: however, this fact is immaterial
as to the validity of Lemma 1 and Theorem 4. Finally, it is noted here that in the statement of
Lemma 1 the vectors e° and e® are mere joint strategies and not necessarily Nash equilibria: we
denote those vectors by e° and e® only so that the subsequent application of Lemma 1 is even more

immediate.

Lemma 1 Let ¥ be a VSA-system satisfying condition H6 and let (C°,C*®) be a pair of VSA-
configurations in N such that C° T C®. Assume that e€° is a joint strateqy for the VSA-game
associated to C° under 3 and that €® is a joint strategy for the VSA-game associated to C® under
3. Put

Z={BeC”:} 15 < i€}

and suppose n € | JgezB. Then

0 < us” Diepceel <k (18)
and
0<py - Yiepeel < k- (19)
Furthermore,
W D (G S epored) < 1S D (S - Yy pee ) (20)

if at least one of the following additional conditions holds:
1opg” = pd;

2. ¥ is a VSA-system with almost linear costs.
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Proof. Clearly, § # BS” C BS® in that n € BS" by the definition of BS® and C° T C*® by
assumption. As s; > 0 for all I € N, the inclusion BS” € BS® and the definitions of S and u$*
imply

0<p, <p, <L (21)
As € and e® are elements of [0, k1] X --- x [0, k] and ) # BS® C BS”®, from the assumption that
n € [JgezB and the definition of Z it follows that

0< ZleBg" e < ZleBg" e < ZZEB,C;" ki (22)

and
0< ZleBg‘\Bg" e < ZleBg'\BgO ki (23)

The definition of uS” and the inequalities in (21) and (22) imply 0 < uS* - > cpcee) < uG” -
> 1cpce ki = Kyn. This proves the validity of (18). The inequalities in (22) and (23) imply

0 <> iepceel < Xiepoehi- (24)

The definition of S and the inequalities in (21) and (24) imply 0 < puS* - Y",c pos€l < us®
>_iepce ki = k. This proves the validity of (19).
1. Assume for a moment that uS° = uS*. As 0 # BY° C BS® and x; > 0 for all | € N, the
assumption that uS&” = p¢" and the definition of u&” and uS® imply BS® = BS*: from (22) we
then infer that

0<>iepceel < iepeeel < D iepee hi- (25)

The definition of xS and the inequalities in (21) and (25) imply

0<py 'ZleBg‘ ef <py - ZZGB,?° ef <y - ZzeBg" ki = Fn- (26)

Given the validity of the inequalities in (26), condition H6 implies 0 < DT v, (uS" - >, poeel) <
D~ v, (uS” - >iepceer) and the inequalities in (21) in turn imply the validity of (20).

2. Assume now that ¥ is a VSA-system ¥ with almost linear costs. When u$° = u¢°, the
validity of part 2 of Lemma 1 follows from the validity of part 1 of Lemma 1. So, henceforth assume
that

Mo # 1 (27)
From (21) and (27) we infer that
0<pl" <u <1 (28)

As k; > 0 for all [ € N, the initial observation that () # BS® C BS* and the second inequality in
(28) imply

0+ BS c B (29)
by the definitions of uS” and uS". Note that (29) entails the existence of at least two distinct

elements in BS": as B contains at least two distinct elements and x; > 0 for all [ € N, from the
first inequality in (28) and the definition of u$* we infer that

0 < MC. _ Rn < Kn,
" Yiepestn  —min{k; 1 1€ BS'} + 3 cpoe ki
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and from the strict inclusion in (29) and the definition of S that

Kn Kn co

. . < = My -
—min{r; : L € BS*} + Doieet Kl T D jepee ki "

Therefore,
o Rn Kn, ce
0< = < - 5 < 30
Hin ZleBg-m —min{k; : 1 € B¢} + EleBg'“l Hn (30)
and hence'?
ns* —min{r; : 1 € B} + ZleBg' Ki min{x; : | € B¢}
ce S =1- : (31)
M ZleBg' K ZleB%" K

Given the validity of the inequalities in (18) and (19), condition H6 implies D v, (0) < D™, (uS” -
Siepeeed) and Doy, (uS” - ZleBg‘ e]) < D7vy (ky): from (28) we then infer that

Ngo ’ D+Un (0) < Ngc ' van(ﬂgo ’ ZZGBTC;O 6?) (32)
and
pe - Do (g - ZleBg‘ ef) < pg - D on (k) - (33)
As BS" is a nonempty subset of N by (29) and ; > 0 for all I € N, we have that min{s; : [ €
BE*} > min{k1,...,kn} >0 and k1 + -+ + Kp > ZleBg- k; > 0. Consequently,
1_min{/<cl:l€Bg°} Sl_min{m,...,nﬁ}. (34)
ZleBg'Hl K1+ -+ Kn
Recall that T
_ I{l DR K”FL +
D < -D 0 35
Un(ﬁn)_fs1+...+mﬁ—min{m,...,/{ﬁ} on (0) (35)

by the assumption that X is a VSA-system with almost linear costs. Note that—because of condition
H6—the validity of the inequality in (35) implies that D~ v, (k,) is a well-defined positive real
number and note that the first factor in the right-hand side of the inequality in (35) is a positive
real number because i1 > 2 and because all caps are positive. Having observed this, from (35) we

infer that
L min{ky,...,Kn} < D, (0)

. 36
Bt T Rn D vy () (36)
From (31), (34), (36) we conclude that
/ig. < D* v, (0)
ps® = Dy (k)
and hence—as uS° and D~ v, (k,) are positive real numbers—that
,Ug. D7y (k) < ,Ugo - D0, (0). (37)

The validity of (20) follows from (32), (33) and (37). m

!3Note that the right-hand side of the inequality in (31) is the quotient of the left- and the right-hand side of the
second inequality in (30).
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Theorem 4 Let ¥ be a convexr VSA-system and let (C°,C*®) be a pair of VSA-configurations in
N such that C° C C®. Assume that €° is a Nash equilibrium for the VSA-game associated to C°
under 3 and that e® is a Nash equilibrium for the VSA-game associated to C*® under 3. Let n° and
n® be the equilibrium aggregates defined by n° =ej + ... +e; andn® =e} +...+e5. Then
n° <n

if at least one of the following additional conditions holds:

1. C°=C*

2. ¥ is a VSA-system with almost linear costs.

Proof. Assume that either C° = C*® or X is a VSA-system with almost linear costs. Denote by
w the zero vector of R™. Clearly, the equality C° = C* implies that u$° = uS" for all n € N. By
way of contradiction, suppose n®* < n°. Then

0<n®—n (38)
Put
Z={BeC®: ) cpel <D cpel}

and

Furthermore, put
z=1Z|.

A moment’s reflection shows'? the validity of the Fundamental Membership

z € Z+\{0}. (39)
Lemma 1 ensures that
0< /Lgo ’ ZleBg"e? < Kn (40)
for all n € Z, that
0<pS" Siepgeel < (41)

for all n € Z and that

c* + c* . C° — c° o
M - D Un(lun : ZlEBS. € ) < Ky - D Un(,LLn : EleBnCO € ) (42)
1 Clearly, z is a nonnegative integer. To check the Fundamental Membership, observe that

n°—n*= ZBQZZnEB(efL - e,‘L) + EBeOO\zZneB(e:L - e;).

The very definition of Z entails that > 5o\ z2_,cg(en—e€n) < 0 and hence we have that n°—n® < 3" 5 ;3"
en): the inequality in (38) in turn implies

nEB(e’O’L -

0< EBeZZneB(eSL - e;).

The very definition of Z entails that > 5 > glen—en) <> . (en—en): wethus concludethat 0 < > ., (en—er)
and hence that z # 0.
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for all n € Z. As e® and e* are elements of R”. and n® < 1°, we have that

0<n®<n’ (43)
and
e® € R \{w}. (44)
As k; > 0 for all [ € N, the definition of u$° and uS* implies
0<py <pg (45)
for all n € N. We briefly show that also
e* € R \{w}. (46)

Indeed, suppose for a moment that e®* = w and pick an arbitrary : € N such that e; > 0: the
existence of such i is implied by (44). As uf"(-,e*;) has exactly one maximizer by part 3 of
Theorem 3 and by the assumption that X is a convex VSA-system, the inequality u?.(e;’, e*;) —

uf”® (ef,e®;) < 0 is true in that ef is a maximizer of u¢” (-, e?;) and e} = 0 # ¢;. The inequality

(2
uf” (eg,e®;) —ul” (e, e*;) < 0 can be equivalently rewritten as

p(ef) - ef +vi(0) —vi(uf” - €f) < 0. (47)
As i € BE” by the definition of BS” and ¢° € R \{w} by (44), a moment’s reflection shows that
(47) implies

o o C° o C° o C° o
p(n°) - ef +vi(—pi -ef + i - Zng;?"el) —vi(pg - ZzGBiC"ez) <0 (48)

in that p is strictly decreasing on R, by conditions H1 and H2 and 0 < e < n° by the choice
of ¢ and the definition of ° and in that v; is convex by condition H6 and 0 < MZ-C. < ,uico by the

validity of (45) for all n € N.'5 By virtue of the momentary assumption that e® = w, the inequality

in (48) can be equivalently rewritten as u$” (e$,e°,) — u&” (ef,e°,) < 0 and this suffices to infer a

contradiction with the assumption that e° is a Nash equilibrium. This concludes the proof of the
validity of (46). From (43) and (46) we also infer that

0<n®<n’. (49)
Put 0° =3 . e and 0® =) _,en. Clearly,
0 < min{n®* —o*,n° —o°}. (50)
A moment’s reflection shows!® the validity of the Fundamental Inequality

n°—n* <o’ —o". (51)

15 A5 v; is convex, v;(a) — vj(b) > v;(c) — v;(d) when d —c¢ > b—a and ¢ > a.
Bput T = UgeczB. To check the Fundamental Inequality, observe that
00— 0" = 3, (e — )
and that
n°—n' = EnEZ(eZ« - ‘3;) + EnET\Z(ez - e;) + ZBGCO\ZEneB(ez - e;).
As Y peoorz2onen(€n — €3) < 0 by the very definition of Z and }°, .1 z(en —€7,) < 0 by that of T and Z, we get
n° —n* <3, cz(en —en) and hence n° —1® < 0° —o°.
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The definition of o® implies 0® > 0 in that €® is an element of R”: the inequalities in (49) and (51)
in turn imply 0 < 0® < ¢°. By making use of conditions H1 and H2, from the inequalities in (49)
we infer that

0 <p(”n*) —p(n°) (52)

and that Dp(n®) and Dp(n°) are negative real numbers. Condition H6 and the validity of the
inequalities in (40) for all n € Z imply the existence of D~ v, (uS” - > iepeeer) in Ry U{+oo} for
all n € Z while condition H6 and the validity of the inequalities in (41) for all n € Z imply the
existence of D v, (uS" -3¢ pee€r) in Ry for all n € Z and hence that

Dt vy (pg - >iepeeel) € Ry (53)
for all n € Z. We briefly show that D~ v, (u$" - > iepee€]) # +oo for all n € Z and hence that
D va (g - Yjepoeef) € Rys (54)

for all n € Z. Indeed, if the equality D~ v, (1S - > cgeoef) = +oo were true for some m € Z,
then puG - D™ vy (1S - > e pee€f) = +oo by (45) and hence, equivalently,

lim vm(pG, - (2 + ZZGBS;’ er)) — vm (i - ZleBgf er)

z—0~ T

however, the equilibrium conditions and the validity of the inequalities in (41) for all n € Z imply

o (€2 2) = - €2,) (65
z—0~ xr

€ Ry U{+o0}

in that m € Z and hence—writing extensively the sum of the two previous limits as the limit of
their sum—we would obtain

im ing 20 2) (et @) —p(°) - (em) _

z—0~ X

in contradiction with the fact that Dp(n°)es, + p(n°) is a well-defined real number. This completes
the proof of the validity of (54) for all n € Z: by the validity of (45) for all n € N, we are in a
position to conclude that

e DT on(u” - Yepooel) € Ry (55)
for all n € Z. Clearly, the validity of (45) and (53) for all n € Z implies

(G4 Ce °
My D+Un(:u'n : ZZGBTCL'. el) S R-‘r

for all n € Z. We are now in a position to conclude that, for all n € Z, the left derivative
D=ul” (-, e2,)(e2) of ul”(-,e%,) at €2 is a well-defined real number specified by

Dp(n°) - e, +p(n°) — 1§, - D™ vn(pl, - Yjepooer) (56)

and the right derivative D uS" (-, e®,)(e2) of u$" (-, e*,,) at e is a well-defined real-number specified
by
Dp(n*) - en, +p(n°) — i, - D¥ o (" - e posel). (57)
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Having clarified these points, we continue the proof observing that the equilibrium conditions imply
that
DFug” (- e%,)(eh) <0< D7ug” (-, e%,,)(er) (58)

—n n

for all n € Z and hence that

Ynez D (et ) (en) <0< 3 e DUy (e, ) (er). (59)

Given the specifications of D~uS” (-, e°,,)(eS) and DTuS" (-, e*,)(e) in (56) and (57) for alln € Z,

it should be clear that the membership in (39), the validity of the membership in (55) for all n € Z
and the second inequality in (59) entail that

0 < Dp(n°)-0°+p(n°) - 2 (60)

and it should be clear that the validity of the inequality in (42) for all n € Z, the membership in
(39) and the inequalities in (59) entail that

Dp(n®)-o* +p(n*) -2 < Dp(n°) - 0° +p(n°) - 2. (61)

The inequality in (51) implies that ¢® < ¢° + 7®* — 1°: from the already observed negativity of
Dp(n®) and the inequality in (61) we then infer that

Dp(n®) - (6° +n* —=n°) +p(n*) - 2 < Dp(n°) - o° + p(n°) - 2. (62)

If the equality 0® = 0 were true, then the inequality in (61) would imply that (p(n®) —p(n°)) -z <
Dp(n°)-0°: a contradiction with the fact that the left-hand side of the previous inequality is positive
by (39) and (52) while its right-hand side is negative by the already observed negativity of Dp(n°)
and by the already observed positivity of ¢°. So ¢® > 0 and from (38) and (51) we infer that

0<n’—n®* <o (63)

Put 7 = n° — ¢® and w = n° — n®. Furthermore, put z = ¢°. It is readily observed that the
right-hand sides of (60) and (62) can be equivalently rewritten as DRZ~!(z) while the left-hand
side of (62) as DRZ"(z — w): noting that (7,z) € Ry x Z; with z > 1 by (39) and (50) and that
(w,x) € Ryqp x Ryy with w < x by the inequalities in (63), we are in a position to conclude that
the inequalities in (60) and (62) are in contradiction with Proposition 2 and conditions H1 and H4.
[

Theorem 5 Let X2 be a VSA-system satisfying conditions H1, H2, H6 and let C' be an almost
smooth VSA-configuration in N'. Assume that €° is a Nash equilibrium for the VSA-game associated
to C under ¥ and that e® is a Nash equilibrium for the VSA-games associated to C under X. Let
n° and n® be the equilibrium aggregates defined by n° = e] + ...+ e and n® =e} + ... +ep. If
n° =n°®, then e° = e°.
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Proof. Assume that n° = n® and, by way of contradiction, suppose e® # e®. Put n = n°. Then
n =n* and
0<n (64)

in that e® and e® are distinct elements of the Cartesian product [0, k1] x- - - x [0, k5] such that n° = n?°.
Therefore, Dp(n) is a well-defined negative real number by conditions H1 and H2. Recalling that

Kn
0<pl=="—<1 (65)
" Yienoh
for all n € N, we continue the proof by distinguishing two exhaustive cases.
Case ) ;.gce] = D cpee] for all n € N. Suppose for a moment that ), gce; = > goe] for
all n € N. The inequality e® # e® then implies the existence of m € N and of 7 and j in BS, such
that
(66)
and
[ ] o]
e; < €j.
As i and j belongs to BS, from the definition of Bic and Bjc we infer that B = BC BC and
from the last two inequalities we conclude that ¢ # j. As C is an almost smooth VSA- conﬁguratmn
either v; or v; is differentiable on the interior of its domain. Without loss of generality, suppose v;

is differentiable on the interior of its domain. Keeping in mind the validity of (65) for all n € N,
note that

0 < uf ZleBcel < Ky (67)

because e € [0, r] for all | € BE and because i and j are elements of B such that €7 < ef and
e <¢j. Clearly,
0 < uf ZleBcel < Ky (68)

in that ) ;. gce; = > ;cgee] by the momentary assumption. Note that
0<ej <ef <k (69)

by (66) and by the fact that ef and e} are elements of [0, x;]: recalling that Dp(n) is a well-defined
real number and that v; is differentiable on the interior of its domain [0, x;], it is readily observed
that the inequalities in (67) and (68) imply that the right-derivative D¥u (-, e°.)(e2) of uf'(-,€°;)
at e? and the left-derivative D~uf'(-,e®;)(e?) of ul(-,e*;) at ef exist in R and are respectively
specified by

Dp(n) - ¢ +p(n) — puf - Doipg - e poef) (70)

and
Dp(n) - €f + p(n) — uf’ - Dug(uf’ ZleBC€l> (71)

The Nash equilibrium conditions then imply

Dt uf (- e2;)(¢f) <0 < D™uf (-, e2;)(ef) (72)

-1 K3
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by virtue of (69). As Y ,.gce] = >, cpcel, from the specifications of the sided derivatives in (70)
and (71) and from the ineqﬁalities in (712) we conclude that Dp(n)-e? < Dp(n)-e$: a contradiction
with the inequality in (66) and the already observed fact that Dp(n) is a negative real number.

Case ) jcpce] # ) jcpoe] for some n € N. Suppose now that 3, poe) # > jcpeey for some

n € N. In particular, but without loss of generality, suppose

> 1eBcel < 2iepcel- (73)

Then there exists i € BS such that
e; <e;. (74)
Recalling that e € [0, ] for all [ € BS and keeping in mind the validity of (65) and (73), note
that
0<uf - Yyepee] <uf - Yiepee] < ki (75)

It is now remarked that if uic Y iepce] = ki and D7vi(k;) = 400, then e® cannot be a Nash
equilibrium since in that case the left derivative of ulc(, e®,;) at el is —oo: to see this, note that
such left derivative is the limit

lim p(n+z)-(ef +x)— vi(uic (x4 ki) —p(n) e + Ui(uic Ky
r—0~ T
and observe that the limit . .
im
z—0~ T

exists in R by the differentiability of p at n and that the limit

(€. N — 0:(u€ - ks
lim vi(pi (@ + ki) —vi(py - ki)

z—0~ X

equals 400 since it can be expressed as the product uic - D7 wi(k;) of the positive real uic and the
positively infinite left derivative D~ v;(k;). Having remarked this, from (75) we are in a position
to conclude that the right derivative at ,u,iC e Bicef and the left derivative at MZ'C e Bfel. of
the convex and strictly increasing function v; exist in R. Recalling that Dp(n) and uic are real
numbers, we then readily infer that the right derivative of u¢(-,e°,) at €2 and the left derivative
of uf(-,e*,) at e? exist in R and are respectively specified by

Dp(n) - ¢ +p(n) — pf - D oi(u§ - Y jepeer) (76)
and
Dp(n) - ¢ +p(n) = puf - D™ 0i(if - Yyepeel)- (77)
Note that
0<e; <e; <k (78)

by (74) and by the fact that e and e} are elements of [0, x;]. The equilibrium conditions then
imply
DFuf (-, e2;)(¢f) <0 < D™uf (-, e2;)(ef) (79)

y» ©C—q 7 —1
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by virtue of (78). As >, pce] < > ,cpce], the convexity of v; implies

C o - C .
DY vi(p; - Ygepee]) < D7 vilui - Yepeel)

and from the specifications of the sided derivatives in (76) and (77) and from the inequalities in
(79) we conclude that Dp(n) - ef < Dp(n) - e3: a contradiction with the inequality in (74) and the

7
already observed fact that Dp(n) is a negative real number. m

Theorem 6 Let X be an active VSA-system and let C' be a VSA-configuration in N'. Assume that
e is a Nash equilibrium for the VSA-game associated to C' under 2 and putn=-e1+---+ez. Then
n >0 and p(n) > 0.

Proof. Pick n € {l € N : D" v;(0) = min{D"v;(0),...,D%vz(0)}} and put w = (0,...,0) € R™,
The right derivative D uS (-, w_y,)(wn) of u§(-,w_y) at wy, exists in R4y U {+00} and is
p(@) -z — v (g - ) + va(0)

lim .
z—0t x

It is obvious that such right derivative—if it exists—is the limit expressed above. It is less obvious
that the limit expressed above exists in Ry U {4o00}. To see this, note that

L — C,
(@) 2 = 0 - 2) +0,(0)
z—0t x

exists in the extended reals and coincides with

C
1 ~1
Jim p(z) — limg_yo+ -

by the fact that the first limit in (80) exists in RU {400} because conditions H1 and H2 imply the
decreasingness of p on R4 and by the fact that the second limit in (80) exists in R} as

(80)

(&
. Un(py ) —on(0) o 4
i, P
with 0 < u¢ < 1 by the definition of u¢ and with D¥v,(0) € Ry by condition H6. The last two

n

observed facts imply also u& - D¥w,,(0) < D¥v,(0) and hence

lim p(z) -z — vn(ug ' 7) + vn(0) > lim p(h) — D+vn(0).

z—0+ x z—0t

Noting that lim,_,o+ p(z) — D" v, (0) > 0 by the assumption that X is active, we are in a position
to get the desired conclusion that DV ul(-,w_,)(wy) exists in Ry U {+oo}. Therefore, w cannot
be a Nash equilibrium and hence e € R} \{w} as ¢; € [0, ] for all [ € N. This proves that n > 0
and implies the existence of ¢ in N such that e¢; > 0. If p(n) < 0, then

p(n—ei)-0—of —vi(uf - (=ei+ Yjepeer) > p ) -ei — 6 —vilug - Yyepeer)

because e; and MZ-C are positive real numbers and because v; is strictly increasing: the observation

that the left-hand side of the last equality is u (w;,e—;) and that the right-hand side of the last
C

equality is u; (e, e—;) yields a contradiction with the assumption that e is a Nash equilibrium. So,

p(n) >0. m
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