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Introduction

Production of goods in modern economies typically features long and in-
terconnected supply chains.! Moreover, many authors find that market
power is a sizable phenomenon, some even argue increasing,? and many
firms are large relative to their sector or even the whole economy.?> How
are prices formed in an input-output network of non-price-taking firms?
How is surplus split? How efficient is the process?

This paper provides a strategic non-cooperative model of large firms
interacting in an input-output network consisting of many specific supply-
customer relationships. It does so introducing the technique of competition
in schedules, or supply and demand functions, to the modeling of general
equilibrium oligopoly. The main interest lies in the fact that such a tech-
nique allows to have a fully strategic model in which firms understand and
take into account their position in the network, and have market power
on both inputs and outputs markets simultaneously, in an endogenously
determined way. These features are rarely both present in input-output
models of the macroeconomy,* but I argue that they are important to an-
alyze market power in input-output networks. In particular, the fact that
firms are fully strategic and take their position in the network into account
can generate large differences in the magnitude of distortions due to imper-
fect competition. The fact that firms have market power on both input and
output markets, as opposed to only outputs, can generate large differences
in the ranking of market power across firms or sectors. Both effects are
particularly stark, especially when supply chains are long.

A further interest of the competition in schedules framework is that
it is a standard model for procurement auctions (Holmberg et al., 2025;
Klemperer and Meyer, 1989; Ausubel et al., 2014), where the consumer is
the auctioneer. The results developed can help shed light on price formation
in procurement auctions where the bidders are simply the last stage of a

potentially complex supply chain. The exploration of the implications of

'Recently the focus of a large literature, see Carvalho and Tahbaz-Salehi (2018),
Bernard et al. (2018).

2See De Loecker et al. (2020), Berry et al. (2019).

3Now known as superstar firms since Autor et al. (2020).

4With some exceptions, see the discussion in the literature section.



this for design are an interesting avenue for further research.

Formally, firms have each a set of input and output goods, some of
which are in turn outputs or inputs of other firms,” and these trade rela-
tionships, or input-output links, are exogenous. Firms play a simultaneous
game in which the available actions are supply and demand schedules, re-
lating quantities of the traded goods to prices: as in a double auction, the
realized price on every trade relationship is the one where demand and
supply cross.

The detailed contributions are the following. First, I show that an
equilibrium exists under general regularity and boundedness conditions on
the set of feasible schedules (Theorem 1), I provide necessary conditions
for equilibrium in the form of a system of partial differential equations
(Theorem 2), and a condition under which the equilibrium is ex-post, in the
sense that firms would not change their decisions even after the realization
of uncertainty (Corollary 2.1).

Theorem 1 presents an existence result under the assumption that the
best reply correspondences are convex-valued (or, in particular, single-
valued). Other assumptions include general regularity and boundedness
assumptions on the technology, consumer demands, and the set of feasible
schedules. As in the seminal Klemperer and Meyer (1989) paper on Supply
function equilibrium, uncertainty in the realized prices is key to avoiding a
huge multiplicity of best replies. In this paper, the uncertainty comes from
stochastic parameters in the transformation function of firms, which can
be seen as input (and output)-specific productivity shocks. This is suffi-
cient to generate enough variation in the schedules so that the equilibrium
prices span all the feasible set, and the best reply is not indeterminate. The
result departs from other existing results in the literature in that it does
not impose parametric functional forms,® and the presence of firm-to-firm
trade.” The regularity and boundedness assumptions on the set of feasi-

ble schedules allow to use Banach spaces techniques and the Ky Fan fixed

5For the purpose of the model, two different instances of the same good, that are
traded between different producers at possibly different prices are labeled as different
“goods”

6 As Malamud and Rostek (2017)

"Contrary to Wilson (2008) or Holmberg and Philpott (2018) that study an oligopoly
where a transmission network affects the demand.



point theorem to show existence, rather than looking for an equilibrium

8 The existence result

as a solution to a system of differential equations.
provided can be of interest also to the modeling of financial markets where
traders have price impacts, departing from the standard CARA - gaussian
setting.

Then I explore what can be said about uniqueness of the best replies.
Theorem 2 indeed expresses the necessary conditions for an equilibrium
in the form of a system of partial differential equations, and clarifies that
the equilibrium in this model is not ex-post (as in Klemperer and Meyer
(1989)), due to network effects. Corollary 2.1 illustrates that the equilib-
rium is ex-post under a measurability condition, stating that the residual
demand and supply depend on a number of uncertain parameters equal to
the degree of each firm in the network. Under this condition, it is possible
to prove that best replies are single-valued, thus complementing the result
of Theorem 1 for existence. The measurability condition says that the de-
grees of freedom of each firm are as many as the independent sources of
uncertainty. This condition is satisfied if the residual schedules are linear
(the case to which the parametric model in the companion paper Bizzarri
(2025)), or if the network is a sequence of sectors linearly connected, a net-
work I label reqular layered supply chain. This shows that the ex-post or
ex-ante nature of the equilibrium depends on an interaction of the sched-

ules’ functional form and the network structure.?

Related literature

This paper contributes to three lines of literature: the literature on com-
petition in supply and demand functions, the literature on production

networks or networked markets, and the literature on general equilibrium

8 As Klemperer and Meyer (1989), Glebkin et al. (2020).

9Rostek and Yoon (2021a) show that even in some cases when the equilibrium is not
ex-post, if schedules are linear the optimization can still be expressed as a pointwise
optimization over quantities given price impacts. This is not true anymore in the model
of the present paper for nonlinear schedules: the crucial problem is that the way prices
respond to a change in schedules (or quantities) is itself uncertain, because it depends on
the realization of the stochastic parameters in the other markets. As clarified by Theo-
rem 2, the optimization over quantities alone would miss this effect, even conditioning
on the price impact. The consequence is that the optimization cannot be performed on
prices anymore, but has to be done directly on schedules.



oligopoly. The closest paper is the companion paper Bizzarri (2025), where
it is developed the case of the linear equilibrium.

My contribution to the literature on competition on supply and de-
mand functions is to introduce the technique to the modeling of general
equilibrium oligopoly, in particular with firm-to-firm trade, and provid-
ing a general existence result. Some papers have applied the concept to
macroeconomic modeling, without considering the input-output dimension:
Vuong et al. (2015) show how to non-parametrically estimate a supply func-
tion equilibrium oligopoly on international trade data; Bornstein and Peter
(2022) study the effect of nonlinear pricing on misallocation. The litera-
ture has studied the situation where the demand firms receive comes from a
network structure with a large dimension of uncertainty, in Wilson (2008),
Holmberg and Philpott (2018), Ruddell et al. (2017), but their firms only
supply to a node in the network, do not trade among themselves. Firm-to-
firm trade is studied in a bilateral setting in Weretka (2011) and Hendricks
and McAfee (2010), always constraining the schedules to a parametric func-
tional form. In the finance literature the model is used to study simulta-
neous demand and supply of heterogeneous assets: Malamud and Rostek
(2017), as well as Rostek and Yoon (2021a), Rostek and Yoon (2021b) and
Rostek and Weretka (2012) analyze a parametric model yielding an equilib-
rium in linear strategies; Glebkin et al. (2020) and Du and Zhu (2017) study
general functional forms, but in a centralized market (corresponding to a
trivial network). Ausubel et al. (2014) and Woodward (2021) study general
functional forms in the context of centralized auctions. Vives (2011) studies
market power arising from asymmetric information, rather than network
position.

My contribution to the production networks literature is to provide a
model of competition in an input-output network in which all firms have
market power on both input and output markets, and are fully strategic
internalizing their position in the supply chain. Many models explicitly as-
sume that firms have power to decide/affect prices only on one side of the
market. To this class belong the workhorse sequential oligopoly games in
Spengler (1950), Salinger (1988), Ordover et al. (1990), Hart et al. (1990).1°
and the recent Carvalho et al. (2020). These models all feature sequential

10And used in classic textbook treatments, such as Tirole (1988).
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moves in which downstream firms take input prices as given and, hence,
one-sided market power. In another class of models authors assume that
output prices are equal to the marginal cost times a markup. The concept
of the marginal cost itself implicitly implies price-taking in the input mar-
ket: indeed, it arises from the price-taking cost minimization problem of the
firm. Hence, it is implicitly assuming unilateral market power. To this cat-
egory belong Grassi (2017), Bernard et al. (2022), Baqaee (2018), Baqaee
and Farhi (2019), Baqaee and Farhi (2020), Huremovic and Vega-Redondo
(2016), Magerman et al. (2020), Dhyne et al. (2019), Huneeus et al. (2021),
Arkolakis et al. (2021), Pasten et al. (2020), Pellegrino (2019). In Galeotti
et al. (2021) only primary producers charge a markup, while the inter-
mediate firms behave competitively, thus abstracting from the balance of
market power among firms that trade with each other. The exception is
Acemoglu and Tahbaz-Salehi (2020), that follows a mixed approach: input
prices are taken as given when firms decide their input mix, but are then
determined in equilibrium through a link-level alternating offers game, re-
lying on exogenously specified bargaining weights. My results complement
theirs, providing a model that does not rely on the choice of exogenously
specified bargaining weights.

Except for Acemoglu and Tahbaz-Salehi (2020), all these papers feature
also the implicit or explicit assumption that firms do not internalize the
effect of their decisions on sectors/firms further downstream beside the
direct customers. Sometimes this is a consequence of the assumption of a
continuum of firms in each sector (and so sector-level aggregates are taken
as given by every individual firm),'* other times it is explicitly assumed.'?

I contribute to the literature on general equilibrium with market power
by providing a fully strategic model of the production side with endoge-
nous market power and firm-to-firm trade; furthermore, the game does not
depend on price normalization, and can incorporate general assumptions
on owner’s preferences as in Azar and Vives (2021). In the recent literature
on “general oligopolistic competition” (Azar and Vives (2021), Azar and
Vives (2018) and Ederer and Pellegrino (2022)) do not consider firm-to-
firm trade. An older related paper is Nikaido (2015), who also uses the

UThis is the case in, e.g. Baqaee (2018) and various others listed in the literature.
12E g, in Grassi (2017), Kikkawa et al. (2019).



market clearing conditions to back up quantities as functions of prices, but
his method is limited to Leontief technology. In the literature on general
equilibrium matching Fleiner et al. (2019) study firm-to-firm trade with dis-
tortions that are exogenous wedges rather than the outcome of a strategic

setting as in the present paper.

1 The Model

In this section I introduce the primitives of the model, that is the firms and
their technology, the input-output network, and the utility of the consumer.
Firms play a game in which the strategies are supply and demand schedules.
Finally, I introduce the technical assumptions needed for the subsequent

results.

1.1 Setting

Firms and Production Network There are N firms and M goods:
their sets are respectively denoted A' and M. Each good might be produced
by more firms, and each firm may produce more than one good. I write
1 — ¢ if firm ¢ produces good g, and g — ¢ if firm ¢ needs good g for
production. Each firm produces using labor, and a set of inputs produced
by other firms, which I denote as N". The set of goods produced by firm i is
NP The consumers’ utility depends directly on a subset of goods, denoted
C C M. Firms, goods and the connections defined above define a directed
bipartite graph G = (N, M, E), where E = {(i,g) | i = gorg — i} is
the set of existing connections. I refer to G as the input output network
of this economy. Note that in this setting, a good is identified by the fact
that is exchanged by a number of firms for a specified price. That is, the
framework can accommodate for a firm selling the same physical good to
different groups of customers for different prices: simply, this case would
show up in the model as two distinct goods. I denote d?** = [N | the
out-degree (number of outputs) of 7, and di" = |N/"| the in-degree (number

of inputs) of firm ¢, excluding labor.

Remark 1.1. In the case in which each firm produces only one good, and

the goods are all distinct, we can identify the sets of firms and goods and



Consumers Consumers

Figure 1: Left: bipartite representation of the production network: the
circles are the firms, the squares are goods. An arrow from a good to
a firm means the firm buys the good, an arrow from a firm to a good
means that the firm sells the good. Right: classic representation of the
network, where nodes are firms and links represent the flow of goods. In
this example, in which each firm has one distinct output good, the two are
equivalent. In general this representation is ambiguous, because it does not
allow to see whether, e.g. 5 and 6 output is the same good or two distinct
goods.

say that two firms are connected if one is a customer of the other. This
is the more standard approach in the literature. Figure 1 illustrates the
standard (Left) and the bipartite (Right) representation followed here, in

the example of a tree network.

The production possibilities available to firm ¢ are described by a trans-
formation function ®;. This is a function of the input and output quanti-
ties, and also on a vector of stochastic parameters €, = (£;4)gen;, one for
each good traded by 7. These can be thought of as technological shocks, in-
creasing or decreasing the input quantity needed to achieve a certain level
of output. As in Mas-Colell et al. (1995), input quantities are negative,
while output quantities are positive. The production possibility set of firm
i is thus {(ggi)imsg, (Qig)g—i> G | Pi((agi)gs (—Gig)g, lis€:) < 0}. The reason to
describe the technology as a transformation function is, besides generality,
to treat symmetrically inputs and outputs: goods are allowed to be both,
depending on what is more convenient given the market conditions and the
implied prices. This a standard approach taken also in Mas-Colell et al.
(1995). In our context, it allows a considerable technical simplification,

allowing to abstract from corner solutions: negative quantities are allowed,



they simply mean trade in the opposite direction.
The price of good g is denoted p,, so that for a firm buying and pro-

ducing quantities (qg;)i—g, (¢ig)g—i, i, the nominal profit is:

Hi = Z DPglgi — Z Pylig — wﬁz

gsi—g 9,9t

Consumers There is a continuum of identical consumers or, equivalently,
a representative consumer. She gets utility U((cy)gec, L, €ic) from a subset
of goods C C M, and disutility from labor L; similarly to the firms, I
am going to assume that the utility also depends on a vector of stochastic
parameters €. = (£4.)gec, one for each good consumed. Denote the demand
for good ¢ derived by U as D, ., and the labor supply as L. The profits
of the firms are rebated to the representative consumer, so that the total
income is wL + Pro, where Pro =) . Pro; is the aggregate profit. Welfare
in this economy is the utility of the consumers in equilibrium: U(c*, L*),
where ¢* and L* are the equilibrium values of consumption and labor: since

the profits are rebated, such welfare also includes the producers surplus.

Notation Bold symbols are used to denote vectors of prices and stochas-
tic parameters: p is the vector of all prices, except the wage w, pi" =

out

((Pg)genrin) are the prices of all input goods of firm ¢, and similarly pf

7
out

is the price vector for the outputs, so that p, = (p§ ,pﬁ")/. Similarly,
P, = (pg)gec is the vector of prices of goods consumed by the consumer.
The analogous notations hold for stochastic parameters, so that, e.g., € is
the vector that stacks all the stochastic parameters of all firms.

When A is a function of many variables, VA = (014, ..., 0, A)" denotes
the (column) vector of partial derivatives (the gradient). HA denotes the
matrix of second derivatives, that is the Hessian of A. When A is a vector
function of z, 9, A denotes the square matrix with on each row the gradient
of A; with respect to = (the Jacobian matrix).

If B is a matrix, B_; denotes the same matrix to which row and column
1 have been removed. If b is a vector, b_; denotes the same vector to which
element ¢ has been removed. B > C denotes the fact that B — C' is positive

semidefinite (even when they are not symmetric).



The Game I: players and actions The competition among firms takes
the form of a game in which firms compete choosing in supply and demand
functions. This means that the players of the game are the firms, and the
actions available to each firm ¢ are a family of functions defined over a set F;
of tuples of input-output prices, wage, and a set of firm-specific stochastic
parameters &: S; : (w,p;,€;) € Fi x & — R+ where F; x & C R2@+1),
Such functions are called schedules, and S; = (S;, —D;, —{;), composed by
profiles of supply functions for outputs S; = (S;)i—¢, demand functions for
intermediate inputs D; = (D;;),-i, and for labor £;. '* The set of feasible
supply and demand schedules for firm i (defined below) is denoted A;, and
A= [Tien Ai-

In the general model of this section we are not restricting traded quan-
tities to be positive. This is a matter of interpretation: since trade has
a direction, negative quantities can simply be interpreted as trade flowing
in the opposite direction.'* This approach simplifies the analysis because
rules out corner solutions in which firms decide not to buy some inputs (or

sell some outputs) at all.

The Game II: prices and payoffs To complete the definition of the
game, we have to define the payoffs. These are, in short, the expected
profits calculated in the prices that satisfy the market clearing conditions.

The market clearing conditions are:

Y Digpjwie5) = Y Selpy,wiex) if ge M

J,9—7 k,k—g

Deg(ppw,ec) = Y Sen(ppow,er) ifgecC

k,k—g

Zgz(pw w, Ei) = L<w7p07 80)

13The sign convention makes formulas simpler allowing the derivative to be positive
semidefinite.

4ndeed, this is the interpretation followed by classic treatments of production theory,
such as Mas-Colell et al. (1995).



Define a function MC : RM x & — RM such that (normalizing the wage to

1):

- Z Sgk’(pkawaek) - Z ng(pj,w,sj) if g e M

k,k—g J,9—J
= Z Sgk(pkawaek) _ch(w7p07sc) lfg eC (1)
k,k—g

Throughout the paper I am going to assume that Walras’ law is specified
and the schedules are homogeneous of degree zero. Hence the market clear-
ing conditions can be stated as MC(p,w,e) = 0. Formally, we have the

following definition.

Definition 1.1 (Pricing function and payoffs). Call €& = X;car€. Define
a feasible pricing function as a function (p*,w*) : €& — RM such that
MC(p*(e),w*(e),e) =0 forall e € £.

The payoff of firm (player) i is the mapping from supply and demand
schedules in A; to real numbers defined by the profits, normalized by the

wage:
7Ti(5i>Dz‘,€i) =

(Zpg Sgi(P}(€),w — Y 1;(e)Dig(p; (e), w*(e), &)

g,2—g g, g—}l

—w*(e)li(pi(e), w'(e), &) fw

In summary, we defined a game: G = (N, (A;)ien, (Ti)ien). Propo-
sition 1 below shows that the pricing function exists, so the payoffs are
well defined, and moreover that the equilibrium does not depend on the
normalization of prices. I call a Nash equilibrium of this game a Supply
and Demand function equilibrium. Notice that the equilibrium defines a
probability distribution over all the endogenous objects; prices, quantities,

hence welfare.

Generalizations: objectives of the firm While the price normaliza-
tion is inconsequential, the uniform normalization of profits is. Hence, in

the appendix (Section 2) Theorem 1 and 2 are proven under the more gen-

10



eral assumption that there are two distinct types of agents, workers and
owners, and firms optimize the indirect utility of shareholders, following
Azar and Vives (2021). The construction in the main text corresponds
to the case in which owners are identical and only value a good produced
independently from the network, whose price is in fixed proportion with
the wage. This is equivalent to the approach followed in Ederer and Pelle-
grino (2022), and the polar opposite of the assumption maintained in Azar
and Vives (2021), in which owners have the same utility as consumers.
Both are evidently abstractions: in the main text I follow the former to for
two reasons: first, our focus is on the effect of endogenous market power
on firm-to-firm trade, rather than the interactions of market power and

owner’s incentives, that are instead the focus of Azar and Vives (2021).

1.2 Assumptions

In this paragraph I collect all the assumptions needed for Theorems 1 and

2.

Assumption 1 - Demand Consumers have aggregate demand D, that
has negative semidefinite jacobian with corank 1 with respect to both
prices p.,w. It is positive definite with respect to stochastic param-
eters g.; D, is positive and differentiable. Finally, if for a converg-
ing sequence of price vectors (p",w") — (p*,w*) we have that the
limit satisfies p; = 0 for some good g, then the demand for that
good diverges: lim(pn’wn)ﬁ(p*ﬁw*)ch(p”,ac) = o0o. Moreover, con-
sumer preferences give rise to a labor supply function ¢°, nonnega-
tive and differentiable. If for a converging sequence of price vectors
(p",w") — (p*,w*) we have that the limit satisfies w* = 0, then the

consumer stops working: lmpn yn)—(p ) £ (D", €.) = 0.

Assumption 2 - Technology The transformation function ®; is differ-
entiable, convex and increasing in the quantities q; = (¢°*, —q™):
V®; >> 0. It satisfies the Inada condition that lim,, o 9,,®; = +oo.
The joint support of the distribution F' of all stochastic parameters

€ = ((&)ien €c), call it &£, is the closure of an open set, bounded in

11



norm by K, (hence compact), and the distribution admits a differen-
tiable density f.

Assumption 3 - Feasible schedules Define A; as the set of schedules
such that:

a) Homogeneity each schedule S; is homogeneous of degree 0 in p;, w;

b) Feasibility each schedule S; satisfies the technology constraint, that is,

for any possible (p,, w, &;), it must be:
(I)i(si(pi7w7€i)7€i) <0 (2)

¢) Regularity the schedules S; are infinitely differentiable and have Jacobian
derivative with respect to prices d,_,,S; that is positive semidef-
inite with rank d; — 1'°; the derivative with respect to stochastic

parameters 0, S; is positive definite.

d) Bounds The feasible schedules are uniformly bounded in the sup norm:
Si(pi w, €2 <
Kg. Moreover, the slopes are bounded too. That is, there exist
constants k and K such that for all p,,w,e; ||0,S;il]2 < K and

Op..wSi > kl;, where |[|-||2 is the spectral matrix norm, and I; is

there is a Kg such that [|S;(p;, w, i)/ = sup,,

w,&;

the identity matrix of appropriate dimension. Moreover, if for
a converging sequence of price vectors (p™, w™) — (p*,w*) we
have w* = 0 then the labor demands become larger than all other

demands: limpn yn)— (prwe) —Sie(P™, W™, €;) > maxgen; {Sig}
Denote A =[], A,.

Most of these assumptions are technical in nature: in particular, the
boundedness and regularity assumptions are crucial in establishing com-
pactness of the feasible set. The assumption on the limiting behavior says
that the schedules are such that for extreme values of prices, at least on
demand or supply diverges: this is used to show existence of a positive
market clearing price vector. As part of the proof of Theorem 1 I am going
to show that there is a bounded set of prices, bounded away from zero,

where we can focus without loss of generality.

13 The rank cannot be maximum because of homogeneity in prices.

12



For a given vector of parameters €;, the assumptions on the trans-
formation function are quite standard: if the firm has a single output y
produced with a strictly concave increasing production function f; (for ex-
ample a CES with decreasing returns to scale), then ®,(y,q1,...,q,) =
y — fi(—q1, ..., —qn,€;) (remembering that negative quantities represent
inputs) is indeed convex and increasing in the ¢ variables. The assump-
tions on stochastic parameters guarantee that they represent productivity
parameters, each of which has an independent effect.

The regularity and boundedness assumptions 3¢) — d) guarantee that
the demand and schedules are well behaved, enough to solve the market
clearing system. The various boundedness assumptions are useful for var-
ious technical steps, and ultimately to guarantee compactness of the set
of schedules, that is necessary to use the Schauder fixed point theorem in

Theorem 1.

Example 1. Standard Supply Function Equilibrium

The model by Klemperer and Meyer (1989) can be seen as a special
case of this setting, in which there is only one sector, the network G is
empty, the only uncertainty is on the consumers, and the labor market
is competitive. Their setting is a “partial” equilibrium one, in which the
consumers do not supply labor to firms but appear only through a demand
function D(-), and firms have a cost function for production C(-), that
does not explicitly represent payments to anyone. Nonetheless, the game
played by the firms is precisely the same: if the transformation function is
®(q;, —;) = q; — C(¢;), and the consumer utility gives rise to a demand of
the form D, + €., the game G played by firms is precisely the same as in
Klemperer and Meyer (1989).

C

Figure 2: The (degenerate) production network of Example 1: there is only
1 Sector whose firm sell to the consumer.

13
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Consumers Consumers

Figure 3: A layered supply chain. Left: bipartite representation, the
squares represent goods, the circles firms. Right: firm-only representa-
tion.

Example 2 (Regular layered supply chain). A regular layered supply chain
is a production structure in which firms are divided in m layers, as in Figure
3. There are m goods, each produced by all the firms in a layer; there are
n firms per layer. Firms in layer ¢ + 1 sell to firms in layer ¢, firm 0 sells
its output to the consumer, and firms in layer m are the only ones to use

labor.

The following example illustrates the simplest assumption on the be-

havior of owners, that will also be useful in the parametric model.

Example 3. Owners consuming an outside good.

If the owners’ utility only depends on one good, o, and, moreover, such
a good is produced from a continuum of firms that use only labor as input
(hence are isolated from the network), with constant marginal cost, then
two things happen. First, the indirect utility of the owners of group i is
simply m; = ;—Z, that is the profit divided by p,, that is the same across
owners: P; = P; = p,. Second, that the price of such a good is equal to
marginal cost p, = C,, hence it is itself a constant. It follows that in this
case it is without loss of generality to assume that managers optimize the

profits of the firms.

2 Results

In this section I present Theorems 1, 2 and Corollary 2.1. First, I prove as

a preliminary result that a pricing function exists and is unique, hence the

14



payoffs above are well-defined (Proposition 1 below), and moreover the set
of feasible prices is bounded, that is going to be important for the argument

of Theorem 1.

2.1 The game is well-defined

We show that under our Assumptions, the game is well-defined and inde-

pendent of the price normalization.

Proposition 1 (Feasible pricing and price normalization). 1. There ez-
ist a feasible pricing function (p,w) : € x A — RY, and is unique
up to normalization. Moreover, the payoffs are independent of price

normalization.

2. Normalizing the wage to 1, the image of the pricing function P =
p(E x A) is bounded, that is there is a k, > 0 such that for any p € P

Ipll2 < K.

The proof relies on the regularity assumptions 3¢) and the bounds in
3d) to show that the pricing function exists thanks to a global form of
the implicit function theorem. The uniqueness up to normalization follows
from homogeneity of the schedules, that translates into homogeneity of the
excess supply M C'. The second part follows from the bounds in Assumption
3d) and an application of the mean value theorem.

Thanks to the normalization by the wage, the profits depend only on
price ratios, and so the game does not depend on the specific price normal-
ization. For this reason, from now on, I am going to focus on homogenized
schedules obtained normalizing the wage to 1, writing, with a slight abuse
of notation, S;(p;, €;) for Si(p;, 1,&;). Moreover, since the technology con-
straint is binding, from now on we focus on S; _, = (5;, —D;), that is the
profile of schedules for input and output goods excluding labor. Because

of the above assumptions 0, S; is positive definite.

2.2 Existence

The main argument is a fixed point theorem. The main obstacle is estab-

lishing compactness of the set of feasible schedules. In order to do this it
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is crucial first to limit the domains of the schedules to a compact set. In
general, for a compact domain D, define A(D) as the set of schedules in A
that are restricted to D x £. To be precise, §; is restricted to the projec-
tion of D on the space of input and output prices of ¢, call it D;. Second,
it is necessary to consider the closure of A(D), denoted A;, with respect
to the ||-||coc-norm on the set of schedules: ||S;||cc = maxpxe |Si(p;, w, )],
which is well defined thanks to the compactness of D x €. Lemma A.2
in the Appendix shows that the pricing function is Lipschitz, and so can
be extended without problems to A(D). To obtain compactness, thanks
to the Ascoli-Arzela theorem, the last piece we need is to choose an upper
bound K to the norm of the price derivatives ||dp,S;||» < K:denote A(D)

the set of schedules that satisfie this bound. The formal statement of the

theorem is as follows.

Theorem 1.

If the best reply correspondences are convex-valued, there exists a compact
domain P C P such that the game G has a pure strateqy Nash equilibrium
in A(75)K

Furthermore, all prices in P can arise for some value of €, and P is

the closure of an open set (in particular, it has positive measure).

The second part of the statement guarantees that, thanks to our as-
sumptions on stochastic parameters, the equilibrium spans a set of prices
that is “large” enough, in particular in which derivatives are meaningful.

The proof of the first part applies the Ky Fan fixed point theorem to
m . Via a standard argument the differentiability and boundedness
assumptions on the schedules in A(]s)K are enough to guarantee equicon-
tinuity, and applying the Ascoli-Arzela theorem we obtain that the closure
is compact. Assumption 2 on the technology is also sufficient to show that

—K
A(P) is convex. Hence, if the best reply is convex-valued, there exist a

fixed point by Ky Fan’s fixed point theorem. For the second part, thanks to
the assumptions of positive definiteness of J,,S; we can show that the pric-
ing function is locally (right-)invertible, and this allows to conclude that
the set of feasible prices is the closure of an open set. The formal proof is

in Appendix A.2.
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2.3 Necessary conditions for equilibrium

In this section I derive necessary conditions for best replies and describe
the insights that emerge on the structure of the equilibrium.

The necessary conditions are best expressed in terms of the residual
schedule, the schedule that collects the residual demands and supplies that
the firm faces on all its input-output connections. It can be formally con-

structed as follows.

Definition 2.1 (Conditional pricing function and residual schedule). Given
a profile of schedules (S;);cnr, the pricing function conditional on i is the
function p_;(- | i), defined on p,,w,e that satisfies the market clearing

conditions 1, excluding those relative to the input and output prices of i.:
Mcg(pfi(piv w, € | i)apia 8) = O \V/g é M
The residual schedule of firm ¢ is:

S'(piw,e) == Si(p(piw,e i), e)
J#
The next lemma sums up some properties of the residual schedules that

are going to be useful.

Lemma 2.1. Under Assumptions 1,2 and 3, the residual schedule is ho-
mogeneous of degree zero in p;, w, differentiable, has positive semidefinite

derivative dp_ ,,S; of corank 1 (i.e. has maximum rank minus 1).

Example 4. (Regular layered supply chain)

The easiest setting in which to understand the mechanics of the residual
demand is the layered production chain illustrated in 3 and defined below:
respectively, firm U1 and U2, and D1 and D2 produce perfect substitutes,
and have the same technology.

When other firms play a profile of schedules S_;, the demand curve
faced by U1 is:

Dp1(p3, p1,ep) + Dp2(pp, pv.€p) —  Suvi(pu,cv)
~ —~ v —_— —

Direct demand from sector 2 Supply of competitor
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for different choices of a supply function Sy, different prices p; realize, as
functions of the realizations of €5. But naturally, given profile S_; also pj,
is endogenous, and a rational U1 takes this into account when optimizing.
In particular the price pp is determined by the market clearing conditions

for good D:

Sv1(pp,pu.cv) + Sv2(pp,pu.cv) = D(pp) + &

as a function of py and the stochastic parameters. If we assume that all
other players are using linear supply and demand schedules S1y(py,ey) =
By (py —ev), Dap(pp,pusep) = Bap(pp —pu —€p), using the downstream
market clearing condition to solve for pp we get the residual demand U1

faces as function of py and the es alone:

. 2Bp

Dy =5 5 (Ae+ e = Bapw) = Bulpy — <) )

which clarifies how, even if each firms acts "locally” choosing its own input
and output prices, actually the problem depends from the parameters of

the whole economy.

The first lemma guarantees that under the imposed assumption, the

pricing function spans all the possible prices in P.

Theorem 2.

Remember that S; _y denotes the schedule played by firm i excluding labor
demand (and similarly for S;_,). Assume a schedule profile S; € A is
twice differentiable, the spectral norm ||||2 of the schedules is differentiable,
and the boundary of P is differentiable. S; is an interior best reply to the
profile S_; only if satisfies the following partial differential equation for all
(p;,€i) € P xE:

E [(10p,Si~d + [0p,S. )™ (=Simt + Op,wS{ (P, 1) = AV®:)) | 8] =0
(4)

and the technology constraint: ®;(S;,&;) = 0.

The proof in is Appendix A.3. The first-order condition can be under-
stood as follows. The term —S; _; + 0,57 ((p;, 1)) — AV®;) represents the
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sensitivity of the profit to a variation in the prices. In this context the
“marginal cost” of producing an additional unit of output is an ill-suited
concept: indeed, the standard marginal cost is intimately connected with
the assumption of taking input prices as given, being the multiplier in the
standard cost minimization problem. In our setting, where firms have some
market power on all input and output markets, the relevant generalization
is the marginal value of relaxing the technology constraint, which is ex-
actly the multiplier );, times V®;, that represents the marginal product
of each input/output. Hence the vector (p}, 1) — \;V®; can be thought
as the vector of markups (for outputs) and markdowns (for inputs). The
reason why the schedule without labor demand S; _, appears in the ex-
pression is because we normalized the wage to 1: this is inconsequential,
as we showed that price normalization does not affect the payoffs nor the
schedules. Then, we can see that this term of the FOC has a very similar
intuition to the standard Lerner equation: the higher the responsiveness
of demand/supply to prices, the smaller the markups/markdowns that can
be charged.

The term ([0p,S;,—e]+[0p,S]_,]) " represents the sensitivity of the prices
to a variation in the schedules. Again, the schedules without labor demand
appear because of the normalization of the wage. The key difference from
Klemperer and Meyer (1989) is the presence of the expectation in the ex-
pression. The reason is somewhat different from Holmberg and Philpott
(2018) and Wilson (2008), in which the equilibrium is not ex-post because
of the possibility of binding transmission capacities in an otherwise linear
transmission network. To understand why this is the case, consider Figure
4. A seller faces a residual demand of the form ep Dy, + e, where ep and
g. are two distinct sources of uncertainty. Computing first the optimal
prices for given ep, and varying ¢., we find the red curve (Left panel). This
is what happens computing the best reply in a standard supply function
competition. But now note that ep changes the slope of the residual de-
mand, so is also affecting the optimal price, and in such a way that the
optimal price realizes a different demand quantity. Hence if we represent
on the same graph (Right panel) the optimal price quantity pairs varying
€p, they do not lie on the red line, they form another curve. Hence, no

single supply function can touch all the ex-post optimal points, but has to
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trade-off between them, depending on the relative probability. This is the
reason why the expectation appears in the necessary conditions. Moreover,
in general the optimization is also not pointwise, in the sense described
by Rostek and Yoon (2021a). Namely, the optimization in schedules is
not equivalent to a pointwise optimization in quantities traded, taking the
price impacts as given. It would be only in case the price sensitivity term
([0p,Si,—e] + [0p, S} _4])~" drops from equation 4, which happens only when
is measurable with respect to p;,€;, as discussed in the following section.
In general such a sensitivity might depend on the realization of the residual
uncertain parameters in a way that correlates with the slope of the resid-
ual demand, modifying the marginal impact of changing the schedule, and

hence the optimal choice.

Remark 2.1 (Optimization is not pointwise unless residual schedule is
linear). The FOC makes it clear that the equilibrium is not in general ez-
post, since the uncertainty about the prices (and stochastic parameters)
in other markets crucially enters the equation. It is useful to note that
the optimization is also not pointwise, in the sense described by Rostek
and Yoon (2021a), unless the residual schedule is linear in the stochastic
parameters. By pointwise here is meant that the optimization in schedules
is equivalent to a pointwise optimization in quantities traded, taking the
price impacts as given. Such an optimization would yield as a FOC:

=i+ (P = AV)0p 18] = =5V P ) 5 | piyei] =0

We can see that only if the residual schedule is linear the jacobian derivative
0,S" is deterministic, and so the term ([0,S;]-1+[0,S/]-1) " drops from the
equation 4. For example, if we perform a similar exercise as in Rostek and
Yoon (2021a), where firms commit to “unconditional supply schedules”,
when the residual schedule is linear we find a similar result: optimization
is pointwise but not ex-post. When the residual schedule is not linear
the term ([0,S;]_1 + [0,S]_1)~" is present and so the optimization is not

pointwise.
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Residual demand
epDy + €.

Optimal prices for different ¢p

and given ¢,
[ ]

Residual demand
epDy + €.

quantity

quantity

Figure 4: A supply function is not equivalent to ex-post price setting when

uncertainty has enough dimensions.

We can rewrite the equation as:

;S
Pi

S —E, K(p; LAV, —

) (apSi + apSzr)_l | D;,Ei| X

1 _ .
By, [ ((0S: +0,8) " [ piei)] ™

In case the owners consume an external good (Example 3), the equation

is reduced to:

Sz{ = (p;_Av®;)Epi [apsir(apsi + 8178[)_1 | D, Ei] Epi[((apsi—"@psir)_l | i, 5i)]_1

that clarifies the role of uncertainty: the markups do not only depend

on the responsiveness of the residual demand, but on the covariance of the

responsiveness of the residual demand and the excess demand. If the two

are independent, only the expectation of the slope of the residual demand

matters. In general no: because when adjusting the schedule firms take

into account both the variation in purchases from neighbors, and the vari-

ation in the expected prices: if the responsiveness of the residual demand

is high whenever the responsiveness of the excess demand is, then markups

are smaller: the intuition is that a high responsiveness of the excess de-
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mand moves the prices more than under independence, hence making the
responsiveness of the residual demand more stark.

The proof proceeds computing the Gateaux derivative along a direction,
then imposing that all Gateaux derivatives are zero: since this is true for
any direction 7);, this allows to conclude that the expression in the Theorem

is zero. Details are in the Appendix.

2.4 Unique best reply

In case the degrees of freedom of the firms are exactly the same as the
uncertain parameters they face we can prove that best replies are single-
valued. In this case the equilibrium is ex-post, and the partial differential
equation 4 boils down to an implicit equation. The key assumption needed

for this is the following:

Assumption 4-Measurability for each firm ¢, there exist a function f;
such that the residual demand is measurable with respect to (p;, €;),
that is, it satisfies 0,57 (p;, €) = fi(p;, €i)-

The immediate consequence of this assumption is that the residual
schedule is completely known once we know p, and €;, hence there is no
residual uncertainty and hence the expectation in 4 is trivial. So, for an
interior solution for which the positive definite constraints are not binding,
the FOC reduces to:

(=Si—e + 0p, S (P = AVOi(=S] €:))) (10p, Si—e] + [0p,S] () =0

where now the term P%i([(?piSi,_g] + [0p, 87 _]) " simplifies away, and we are
left with:
Sit = 0p,Si (P, 1) = AiV®i(=5], &) (5)

This is an equation that directly defines the best reply schedule S; _, as a
function of prices and schedules played by competitors. Hence it is imme-
diate to conclude that in this context the best reply is unique. Moreover
we recover both the pointwise optimization and the ex-post equilibrium as
in Klemperer and Meyer (1989). We can summarize the above discussion

as follows.
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Corollary 2.1. Under Assumptions 1, 2, 3 and 4, if the constraints are
not binding (Z; = J; = 0), the best reply is single valued in the interior of
A(P).

The measurability assumption is not vacuous. An example that satisfies
it for any network is when the profile of schedules played is linear, case to
which is devoted the companion paper Bizzarri (2025). In this case the
function f; is actually a constant, independent of € and p,.The following is
another example, where it is not the functional form, but the structure of

the network that determines the measurability.

Example 5 (Regular layered supply chain). In the context of a regular
layered supply chain each firm has 1 degree of freedom, because it has to
decide a schedule for inputs and outputs, constrained by the technology.
Hence, it is sufficient one stochastic parameter to generate enough variation
in the realized prices to span the whole feasible set. Assume that the
only stochastic parameter is the one of consumer demand e., while the
transformation functions of firms, and the schedules, are all deterministic.*¢
In this case the measurability assumption is satisfied, because, under the
assumptions above, realizations of the stochastic parameter . are one to

one with price variation, for any firm. Details are in Online Appendix B.6.

Conclusion

This paper provides a way to model oligopoly in general equilibrium as
a game in which firms fully internalize their position in the supply chain
and have market power both over inputs and outputs, in an endogenously
determined way. I show that such features are desirable in a input-output
model with market power: if absent, both the aggregate and the relative
ranking of distortions due to imperfect competitions is crucially affected.
This suggests that, when modeling complex networks of large firms with
market power, simplifying assumptions might affect in a sizable way the
results. The parametric functional form introduced is suitable for quantita-

tive work, and the strategic complementarity structure of the equilibrium

160r, equivalently, the distribution of &; is a Dirac for all i.
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makes it computationally tractable: the exploration of the quantitative im-
plications of the supply and demand function equilibrium for the analysis

of market power is an interesting avenue for future research.
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Appendix

A Proofs

As anticipated in the text, the proofs of this section are done under a more
general assumption for the payoffs, consistent with the literature on general
equilibrium oligopoly (in particular Azar and Vives (2021)), namely, that

firms optimize the indirect utility of their owners. The details are as follows.

Workers and Owners As in Azar and Vives (2021), there are two
types of agent: workers, and owners. There is a continuum of identical
workers or, equivalently, there is a representative worker, whose utility is
U((cg)gecs L, €ic). The workers have aggregate demand DY that has neg-
ative semidefinite jacobian with maximum rank (which is |C] — 1) with
respect to both prices p, and stochastic parameters e,

The owners, instead, do not work, but own the firms. They are a
continuum, partitioned in N groups, and owners in group ¢ collectively
own all the shares of firm ¢. They have utility functions homogeneous of
P , where II; is the

profit of firm i, P; is a function of prices, homogeneous of degree 1 (the price

degree 1, generating aggregate indirect utilities V; =

index relative to owners of group i) and differentiable. These assumptions
are enough to generate an aggregate demand that is differentiable and has
negative definite jacobian as in the main text.

As anticipated, firms optimize the indirect utility of shareholders. Hence

the payoff of firm 7 is:

p w
mi(S) =E —E<Z — Sg,i(Pi, €3) Z Diy(p;. € _Egi(piaei>>

1—g g*)l

Note that this depends only on ratios p,/P;, hence not on price normal-
ization. The assumption followed in the main body, of firms maximizing
profits II;, can be recovered as a special case of this setting assuming that
the owners’ utility only depends on only one good, o, and, moreover, such
a good is produced from a continuum of firms that use only labor as input
(hence are isolated from the network). Hence in this case the price indices

are all P, = w, and we recover the main text formulation.
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A.1 Proof of Proposition 1

We are going to need the following Lemmas, proved in the online Appendix.

Lemma A.1l. Under Assumptions 3¢, d) the map MC has positive defi-
nite jacobian derivative d,MC. Moreover, there are k and K such that
10, MC|l; < K and ||0,MC™||s < k1.

Lemma A.2. There is a constant K, such that the derivatives of the pric-
ing function with respect to the stochastic parameters, and the (Fréchet)
derivatives with respect to the schedules are bounded above: ||0:p| < K,
and ||0s,p||s” < K,. Here ||-]|% denotes the operator norm: relative to the

|-[]oc norm in the domain: if A is a linear operator A; — RM || AP =
max{[|ASi[[2 | |Sillec = 1}

Part 1 First, focus on schedules in .A. We want to show that for every e
there is a price vector satisfying the market clearing conditions. For every
given € the map z(p) = —MC(p, €) satisfies all the properties of the excess
demand in Proposition 17.C.1 in Mas-Colell et al. (1995), except property
(v) that has to be replaced with:

(V') if ( l)mt : with py =0 or w* =0
pn7wn — p*7w*

then (pn,wnl)lg%p*yw*)z(p ,w') < I;é%({zig}
this follows from the assumption 1 that the demand diverges when some
good prices go to zero, and the assumption 3d) that labor demand grows
more than other demands when the wage tends to zero.

Hence, an equilibrium price vector exists with p,w >> 0.

Moreover, the Lemma A.1 guarantees that the jacobian of z is negative
definite, so that we can use a global inversion theorem (Theorem 3.1.8 in
Ambrosetti and Prodi (1995)) to conclude that the equilibrium is unique.
Now, using the implicit function theorem applied to the map (p,e) +—
(MC(p,€),€), we can conclude that p(e) is differentiable on &, the interior
of £. The Lemma A.2 guarantees that it is Lipschitz, so it can be extended
uniquely to the whole of £.

Now let us consider schedules in the closure of A. Lemma A.2 guaran-

tees that the map p : &€ x A — RM is Lipschitz, hence it can be extended
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in a unique way to the closure of the domain.
So far, we produced a unique function p(w, €) for each fixed w. Now
consider two functions such that M C(p(w, €),w,e) = 0and MC(p'(w', ), w',€) =

0. Since M C' is homogeneous of degree zero:
MC(P' (W' e),w' e) = MC(p' (v, e)w/w', w,e) = 0,

and so p'(w',e)w/w’ = p(w, ), that is, the functions are the same up to a
positive normalization. Since the payoffs only depend on price ratios, they

are independent of the normalization chosen.

Part 2 Fix a schedule S; € A; and a value €, and call S, = tS+ (1 —t)S
and g; = te’ 4+ (1 —t)e. By the mean value theorem in Banach spaces (e.g.,
Proposition 7.2 in Luenberger (1997)):

Ip(S.€") = p(S,e)l2 <

sup [|0sp(es SIS — S)lloe + sup [|0:p(er, So)l2[l( — €) 2

te(0,1] t€[0,1]
Now by the Lemma A.2 and Assumption 3d, such a norm is bounded above
by k, = 2K,Ks + 2K,K,., and in particular the image of £ x A via p is
bounded by k. O

A.2 Proof of Theorem 1

Thanks to Proposition 1 the set P is bounded; since it is closed by defi-
nition, it is compact, hence all schedules and their derivatives have upper
bounds on it.

The set of all differentiable schedules that are bounded, with bounded
derivatives, and compact domain P x &£ is equicontinuous (Theorem 14.2
in Treves (2016)), hence, by the Ascoli-Arzela theorem, its closure is com-
pact in the sup-norm. The set A(P)  is a subset of such a compact set.
Moreover, it is closed by definition, being the closure of A(P)X. Hence it
is a closed subspace of a compact set, and so is compact. Since the pricing
function is Lipschitz, it can be extended uniquely to such closure: hence

the game is well defined also on A(P)
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Since the profit function is continuous, the best reply problem has a
solution. Moreover, by the maximum theorem the solution correspondence
is upper-hemicontinuous (in particular, if single valued, is a continuous
function).

It remains to prove that A(P)* is convex. Consider S; and S/ in A;(P).
All the regularity assumptions are inherited by any convex combination,

and it has the same domain by definition. The bounds are also inherited:
kI < adp,Si+ (1 — )0y, S; and ||adp, wS; + (1 — a)0p, wSills < K

and similarly for J.,S;. By convexity of @, the technology constraint is also
satisfied:

(I)Z(@Sl + (1 — Oé)Sl{, 81') S qu)i(SZ’, Ei) + (1 — Oz)CIDl(SZI,é‘Z) S 0

which is what we wanted to show.

So, if best replies are convex-valued (or in particular single valued), the
best reply map is continuous on a set W that is compact and convex,
hence by the Ky Fan fixed point theorem the game has an equilibrium.

Denote the equilibrium profile as §*. Now, it is possible to further
restrict the domain of each schedule to P; = p;(E,8%), that is the image
of £ via the equilibrium profile. This in general might be smaller than
P. Nevertheless, the profile S* remains an equilibrium. Indeed, all the
price values in P\ p;(€,S*) have probability zero, so they do not affect the
payoffs. Hence we can restrict each schedule to P; = p;(€,8%), to have an
equilibrium in which the whole domain is spanned. Finally, the following
Lemma (proven in the Online Appendix) uses the positive definiteness of

0c,S; to guarantee that each 751 is the closure of an open set. O

Lemma A.3. Under Assumptions 1-3, P; is the closure of an open set.

A.3 Proof of Theorem 2

We derive necessary conditions for an interior solution in A. The necessary

conditions for optimization are the usual Lagrange multiplier equations
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(Luenberger (1997)). The Lagrangian is:
£1(81> =E [p;fgcgi,,g + 81 - )\Z(I),L (817 El)}

where p, (S, €) is the unique pricing function (from Proposition 1) such that
the wage is 1.

We have to show that this is Fréchet differentiable, and the necessary
condition is setting the Fréchet differential to 0. To do so, in the following
Lemma (proven in the Online Appendix) we compute the Gateaux differ-
ential in the direction 7;. Under the assumption we made on 7;, it is always
possible to choose h small enough such that S; + hn; € A.

Lemma A.4. Assume that P has differentiable boundary. The Gateaux
differential of the Lagrangian in a direction 7;, satisfying the above assump-
tions, is:'" E [} _,G;], where:

PiSi

P Vpi71Pi>

i

Gi = (0p,Si - +[0p,Si _)) ™ (SI +0p,_Si—o((Pi, 1) = AiVP;) —

The assumption of differentiable boundary is necessary to apply the
divergence theorem, and integrate by parts the derivative of the constraints,
eliminating the derivatives of n; from the expression.

Now by the law of iterated expectations we can rewrite the expectation
as E[n; _,(p;;€i)E[G; | p;, €], and by the arbitrariness of 7; the FOC is
equivalent to E[G; | p;,&;] = 0. Using Lemma A.3 to conclude that S} =
—&; for all the possible prices, we obtain the expression in the main text,

noting that in that case Vp, _ P = 0. O

L

1"Note that the component of 7 relative to labor does not directly enter the equation,
but this is not strange because it is implicitly determined by the technology constraint.
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B Additional proofs of section 2

B.1 Proof of Lemma A.1

Part I: Positive definite

By the lifting procedure as in Malamud and Rostek (2017), we can
consider every supply function as defined on the set of all prices instead
then the prices of the neighboring goods, and similarly having values in
tuples of all the goods: S; : RY — RM. The consistency required is, of

course,
Si(pi,p_i,€) = Si(p;,e) Vg €Ni S,i(p;,p_iye) =0Vg ¢ N,
With this notation, we can write the excess supply function as:

MOg:Z‘égi_Dc'i_gc

Denote S; ¢ the schedule of ¢ excluding (if present) labor demand. More-
over, M C' is homogeneous of degree zero, hence naturally we cannot invert
it as a full function of prices. For convenience we consider it a function of
p_,,, the vector of prices excluding the wage.

The Jacobian derivative is:

OpMC =" 0p8i ¢ — 0D,

This is symmetric if all the derivatives are symmetric. We are going to
prove that, once we normalize by a price, this is also positive definite. By
Theorem 6 in Gale and Nikaido (1965), this implies that the realized prices
are well defined on any convex domain.

Considering any vector € R™ \ {0}, we have

'O, MCx = Z x' (0p,Si 4 — Op D)z = Z x,0p;S; ;i + x.(—0pD.)x,

where, as for the prices, we denote x; = (24)4en;. Now if there is a ),
such that p, = \;V®, for each ¢, then S; _, is positive definite, because the

original schedules have co-rank 1. In this case, it follows that J,MC' is
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positive definite. If not, §; _y has co-rank 1, and satisfies:

1 1
Z Uig[Si—elng = OVh  u;y = (—pg — a—fbqu}i) for some h € N
g ph Dh 1

So, if there is a nonzero vector « such that 2’0, MCz = 0, it must
be x; = u; for some 7, and x; = 0 otherwise. Where, since u; is nonzero,
and the sum is null, at least two entries of the vector u; are nonzero,
corresponding to, say, good g and h. Then x, = u;; # 0, and z, is also
an element of x;, so also ; = u;. Repeating the reasoning, we can go on
until we reach a firm k such that the good g such that u, # 0, and g is a
good consumed by the consumer: in that case x, cannot be zero, and we
reach a contradiction. Hence the quantity x’'0, M Cx is positive, and the
jacobian 0, MC'is positive definite.

Part 1I: bounds

For the lower bound, by Assumption 3d) we have:

EY I <0,MC = 0,8 ¢~ 0pD.

where I; is the lifting of the identity matrix relative to 7, having a 1 on
the diagonal whenever g, h are both traded by firm ¢, and zero otherwise.
The sum of such matrices is still diagonal. In particular, the entry in
position g, h is ngk, where n, is the sum of firms that trade good g, plus
(eventually) the consumer. Anyhow this is larger than 2k, so the matrix is
bounded below, and so it can be found a & such that kI < K ), I;. Now by
definition this is the same as kI < H(9,MC'), where H(A) = (A+ A’)/2
denotes the symmetric part of a matrix. For a property of the positive
semidefinite ordering, it follows that k~'I > H(0,MC)~!, that implies
k™' > |H(9p MC)~!|s. By Lemma 2.1 in Mathias (1992) it follows that
[0, MOz < | H(@pMC) s < k7

Concerning the upper bound, it is sufficient to apply subadditivity of

the norm and again Assumption 3d)

1D 0p,8i—t = OpDell2 < (N+ 1)K = K
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B.2 Proof of Lemma A.2

We have to prove that the Fréchet derivative of p with respect to the

schedules is bounded. By the implicit function theorem is:
Osp = —(8PMC)7183MC

We have to compute the Gateaux derivatives in all the directions 7 that

satisfy the constraints:
OsMC(n) = OnMC(S + hn),p,e) = MC (1, p,€)

and MC(n,p,e) = Y. 0i(p,e) where 7); is the lifting of 7, as in the proof
of Proposition 1.

Hence [|(0p,MC)10sMC||5" = max,.=1][(OpMC) ' MC(n,p,e)|l2 <
> Imill2 = NKs. Moreover, from Lemma A.1 follows || (9, MC) 7y < k.
Hence, for any 1 ||0sMC(n)|l2 < k~'N. By definition of operator norm,
the operator norm of ||dsp|| is bounded above by the same constant.

Similarly,
10cpll2 = [[-(0pMC) 0 MCly < kT'NK
and now define K, = max{k"'NK k™ 'N}. O

B.3 Proof of Lemma 2.1

Consider the excess supply function, neglecting all ¢ that are produced or

used by firm i. We obtain a function:
MC; . (p,e) = MCy(p,e)Vg ¢ N,

With a reasoning totally analogous, this is a function that can be inverted,
expressing p_; as a function of p; (including labor). Moreover, this function

is homogeneous of degree 1 in prices.
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Now, for g € N, the residual schedule is simply:

5;"(1%»6) = MCg(p—i(pi)7pi7€> - Sg<pi7 €i)

Homogeneity follows immediately. Hence, we normalize the wage to 1.
Define MC" the function such that M C" = MCy(p_;(p;), Pi,€)—Sy(Pis €:).
Notice that by definition of the excess supply function this is actually inde-
pendent of §. Now, we can compute the derivative of the partially solved
prices:
Op,p_; = —(0MC_;, )'OMC,,

and so define:

Op,S" = 0p 8" = OMC;, — OMCyy, (OMCy ) 'OMCy,
that is the Schur complement of M AC’_ip_i in the jacobian OMC, appro-
priately reordered to have all ¢ € N in the upper left corner, and all others

in the rest:

~ ~ -1
A MCyp,  OMCyy,
(9MC’:< OMCyy,  OMCyy )

B ( (OMCyy, — OMCiyy (OMC_y, )T'OMC,)™" B >
a C D

Hence we conclude that if all schedules have positive definite derivatives
then 0, 8" is positive definite beacause principal submatrices of positive

definite matrices are still positive definite. O

B.4 Proof of Lemma A.3

Fix §. Since the stochastic parameters are ) . d; > M, the map p is
not invertible. We can consider a restriction such that it is. Namely,
impose that the uncertain parameters relative to the same good are the
same across firms: €4 = €4, for all 7, j and g. Let us denote the stochastic
parameters remained independent as &, and their domain as €& ¢ RM.
This is a compact set, because it is a closed subset of a compact set. This

way, the uncertain parameters behave formally exactly like prices, and with
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analogous reasoning as in Proposition 1 we obtain that d: M C' is positive
definite. Moreover, repeating the reasoning in the proof of Proposition 2.1,
we obtain that if we consider constants the parameters relative to one firm
i, this is equivalent to calculate the matrix 0., MC = 9:MC — 8,;.5'1», and
this is still positive definite, exactly as 0, M C —8,;8 ; is still positive definite.
In particular, it is invertible.

Hence, in the interior of E:
8€/ip = —(8PMC’)’18€/Z-MC’

is invertible, and so the map p : € — RM is locally invertible: for any
& € & there is an open Uz such that p |v. is invertible. In particular, p(Usz)

is open, and so p(€) = UzUz is open too; hence p(&) is the closure of an

open set. O

B.5 Proof of Lemma A.4

Consider the perturbation in the direction of n: S; + hn;. Write p;(h) for
p;(Si + hni, ;). Define the functions:

pih) |
B(pl(h))Sl (pz(h)75%> (6)

M(h) = ©:(5; (pi(h), 1)) (7)

N(h) = —E

The Gateaux derivatives in direction 7; are N’(0), M'(0). Note that
we can exchange derivatives and integrals since all the functions involved
have bounded derivative (and the price space is supposed compact), hence
dominated (because a probability space has finite measure) (see Billingsley
(2008), Theorem 16.8). We have first to compute the derivative of p,(S; +
hn;, ) with respect to h, that by the chain rule is:

np;(Si—¢ + hiji—,€) = s, _,PiMi—t

where Js, _,p; is the Gateaux derivative of the prices as functions of the
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schedules chosen, that can be computed via the implicit function theorem:!®

s, pi(1:)] = —([Op,Si.—e] + [0, S} _]) 11—

where I use the fact that the both the submatrices are positive semidef-
inite, and the residual demand is positive definite. Remember that S; _,
denotes the components of the schedule §; excluding the labor demand,
and similarly for S§ , and 7; _,. Hence, now:

Wi =8 [ s, 1.2

_ R {ahpi(h)’sf + P08 Onpi(h) _ pi(h) (S} (ps(h), €i))
- - P

V. FL0up (1)

(Si(pi(h),€:))

—& (51 + g+ S0

Vpi,—lpi,—ﬂ) X

1 _
50051+ 10,5,

)

for any direction 7;. Moreover:

M'(h) = ©,(S] (p;(h), €:))
= V®,0,8 0, (h)
= —V0,0,S]_(([0p,Si.—] + [0p, S} _o]) '10i, -

for any direction 7);.

B.6 Details of Example 2

Write D; = ) jei D;; for the aggregate demand function from firms in
layer ¢, and similarly S; = Zjei Si; for the supply. Hence MC = (S5 —

Dy, ..., S, — D.). Now consider the matrix:

diag(p)~'0,MCdiag(p) =

18 Alternatively, we can compute directly 0y p; using the implicit function theorem,
the procedures are identical.
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O S — 0y, Dy, —Opu Do, 0 0

yat p3
—81,1521)—2 Op,S2 — Opy D3, —8p3D3p—2, e 0
Pn—1
0 e 0 0pn_1Snp—n Op,, Sn, — Op, D¢
: O Di Pi 15 Pi
By homogeneity, %D = po and By S = “pey Soon each row of

this matrix the sum of the off-diagonal terms is equal to 0,,5; + O, Dit1,
which is exactly equal to the diagonal element, but for row 1 and 2, in which
one of the addenda is missing and so the diagonal element is larger. Hence
the matrix is weakly chained diagonally dominant, so positive definite. So,
by similarity, also d,MC' is positive definite, and since it has negative off-
diagonal elements, it is an M-matrix and 9,MC~! has all positive entries.
Now 0.-MC = (0,...,—0.D.), and so O-p; > 0 for all i. Moreover if & — oo
D, — oo and € — oo D. — 0, so the whole price space is reached.

Finally, O.p;, # 0 implies 0,6 # 0, that is there exist g; such that

e = g;(p;), hence the measurability assumption is satisfied.
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