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Introduction

Production of goods in modern economies typically features long and in-

terconnected supply chains.1 Moreover, many authors find that market

power is a sizable phenomenon, some even argue increasing,2 and many

firms are large relative to their sector or even the whole economy.3 How

are prices formed in an input-output network of non-price-taking firms?

How is surplus split? How efficient is the process?

This paper provides a strategic non-cooperative model of large firms

interacting in an input-output network consisting of many specific supply-

customer relationships. It does so introducing the technique of competition

in schedules, or supply and demand functions, to the modeling of general

equilibrium oligopoly. The main interest lies in the fact that such a tech-

nique allows to have a fully strategic model in which firms understand and

take into account their position in the network, and have market power

on both inputs and outputs markets simultaneously, in an endogenously

determined way. These features are rarely both present in input-output

models of the macroeconomy,4 but I argue that they are important to an-

alyze market power in input-output networks. In particular, the fact that

firms are fully strategic and take their position in the network into account

can generate large differences in the magnitude of distortions due to imper-

fect competition. The fact that firms have market power on both input and

output markets, as opposed to only outputs, can generate large differences

in the ranking of market power across firms or sectors. Both effects are

particularly stark, especially when supply chains are long.

A further interest of the competition in schedules framework is that

it is a standard model for procurement auctions (Holmberg et al., 2025;

Klemperer and Meyer, 1989; Ausubel et al., 2014), where the consumer is

the auctioneer. The results developed can help shed light on price formation

in procurement auctions where the bidders are simply the last stage of a

potentially complex supply chain. The exploration of the implications of

1Recently the focus of a large literature, see Carvalho and Tahbaz-Salehi (2018),
Bernard et al. (2018).

2See De Loecker et al. (2020), Berry et al. (2019).
3Now known as superstar firms since Autor et al. (2020).
4With some exceptions, see the discussion in the literature section.
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this for design are an interesting avenue for further research.

Formally, firms have each a set of input and output goods, some of

which are in turn outputs or inputs of other firms,5 and these trade rela-

tionships, or input-output links, are exogenous. Firms play a simultaneous

game in which the available actions are supply and demand schedules, re-

lating quantities of the traded goods to prices: as in a double auction, the

realized price on every trade relationship is the one where demand and

supply cross.

The detailed contributions are the following. First, I show that an

equilibrium exists under general regularity and boundedness conditions on

the set of feasible schedules (Theorem 1), I provide necessary conditions

for equilibrium in the form of a system of partial differential equations

(Theorem 2), and a condition under which the equilibrium is ex-post, in the

sense that firms would not change their decisions even after the realization

of uncertainty (Corollary 2.1).

Theorem 1 presents an existence result under the assumption that the

best reply correspondences are convex-valued (or, in particular, single-

valued). Other assumptions include general regularity and boundedness

assumptions on the technology, consumer demands, and the set of feasible

schedules. As in the seminal Klemperer and Meyer (1989) paper on Supply

function equilibrium, uncertainty in the realized prices is key to avoiding a

huge multiplicity of best replies. In this paper, the uncertainty comes from

stochastic parameters in the transformation function of firms, which can

be seen as input (and output)-specific productivity shocks. This is suffi-

cient to generate enough variation in the schedules so that the equilibrium

prices span all the feasible set, and the best reply is not indeterminate. The

result departs from other existing results in the literature in that it does

not impose parametric functional forms,6 and the presence of firm-to-firm

trade.7 The regularity and boundedness assumptions on the set of feasi-

ble schedules allow to use Banach spaces techniques and the Ky Fan fixed

5For the purpose of the model, two different instances of the same good, that are
traded between different producers at possibly different prices are labeled as different
“goods”

6As Malamud and Rostek (2017)
7Contrary to Wilson (2008) or Holmberg and Philpott (2018) that study an oligopoly

where a transmission network affects the demand.
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point theorem to show existence, rather than looking for an equilibrium

as a solution to a system of differential equations.8 The existence result

provided can be of interest also to the modeling of financial markets where

traders have price impacts, departing from the standard CARA - gaussian

setting.

Then I explore what can be said about uniqueness of the best replies.

Theorem 2 indeed expresses the necessary conditions for an equilibrium

in the form of a system of partial differential equations, and clarifies that

the equilibrium in this model is not ex-post (as in Klemperer and Meyer

(1989)), due to network effects. Corollary 2.1 illustrates that the equilib-

rium is ex-post under a measurability condition, stating that the residual

demand and supply depend on a number of uncertain parameters equal to

the degree of each firm in the network. Under this condition, it is possible

to prove that best replies are single-valued, thus complementing the result

of Theorem 1 for existence. The measurability condition says that the de-

grees of freedom of each firm are as many as the independent sources of

uncertainty. This condition is satisfied if the residual schedules are linear

(the case to which the parametric model in the companion paper Bizzarri

(2025)), or if the network is a sequence of sectors linearly connected, a net-

work I label regular layered supply chain. This shows that the ex-post or

ex-ante nature of the equilibrium depends on an interaction of the sched-

ules’ functional form and the network structure.9

Related literature

This paper contributes to three lines of literature: the literature on com-

petition in supply and demand functions, the literature on production

networks or networked markets, and the literature on general equilibrium

8As Klemperer and Meyer (1989), Glebkin et al. (2020).
9Rostek and Yoon (2021a) show that even in some cases when the equilibrium is not

ex-post, if schedules are linear the optimization can still be expressed as a pointwise
optimization over quantities given price impacts. This is not true anymore in the model
of the present paper for nonlinear schedules: the crucial problem is that the way prices
respond to a change in schedules (or quantities) is itself uncertain, because it depends on
the realization of the stochastic parameters in the other markets. As clarified by Theo-
rem 2, the optimization over quantities alone would miss this effect, even conditioning
on the price impact. The consequence is that the optimization cannot be performed on
prices anymore, but has to be done directly on schedules.
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oligopoly. The closest paper is the companion paper Bizzarri (2025), where

it is developed the case of the linear equilibrium.

My contribution to the literature on competition on supply and de-

mand functions is to introduce the technique to the modeling of general

equilibrium oligopoly, in particular with firm-to-firm trade, and provid-

ing a general existence result. Some papers have applied the concept to

macroeconomic modeling, without considering the input-output dimension:

Vuong et al. (2015) show how to non-parametrically estimate a supply func-

tion equilibrium oligopoly on international trade data; Bornstein and Peter

(2022) study the effect of nonlinear pricing on misallocation. The litera-

ture has studied the situation where the demand firms receive comes from a

network structure with a large dimension of uncertainty, in Wilson (2008),

Holmberg and Philpott (2018), Ruddell et al. (2017), but their firms only

supply to a node in the network, do not trade among themselves. Firm-to-

firm trade is studied in a bilateral setting in Weretka (2011) and Hendricks

and McAfee (2010), always constraining the schedules to a parametric func-

tional form. In the finance literature the model is used to study simulta-

neous demand and supply of heterogeneous assets: Malamud and Rostek

(2017), as well as Rostek and Yoon (2021a), Rostek and Yoon (2021b) and

Rostek and Weretka (2012) analyze a parametric model yielding an equilib-

rium in linear strategies; Glebkin et al. (2020) and Du and Zhu (2017) study

general functional forms, but in a centralized market (corresponding to a

trivial network). Ausubel et al. (2014) and Woodward (2021) study general

functional forms in the context of centralized auctions. Vives (2011) studies

market power arising from asymmetric information, rather than network

position.

My contribution to the production networks literature is to provide a

model of competition in an input-output network in which all firms have

market power on both input and output markets, and are fully strategic

internalizing their position in the supply chain. Many models explicitly as-

sume that firms have power to decide/affect prices only on one side of the

market. To this class belong the workhorse sequential oligopoly games in

Spengler (1950), Salinger (1988), Ordover et al. (1990), Hart et al. (1990).10

and the recent Carvalho et al. (2020). These models all feature sequential

10And used in classic textbook treatments, such as Tirole (1988).
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moves in which downstream firms take input prices as given and, hence,

one-sided market power. In another class of models authors assume that

output prices are equal to the marginal cost times a markup. The concept

of the marginal cost itself implicitly implies price-taking in the input mar-

ket: indeed, it arises from the price-taking cost minimization problem of the

firm. Hence, it is implicitly assuming unilateral market power. To this cat-

egory belong Grassi (2017), Bernard et al. (2022), Baqaee (2018), Baqaee

and Farhi (2019), Baqaee and Farhi (2020), Huremovic and Vega-Redondo

(2016), Magerman et al. (2020), Dhyne et al. (2019), Huneeus et al. (2021),

Arkolakis et al. (2021), Pasten et al. (2020), Pellegrino (2019). In Galeotti

et al. (2021) only primary producers charge a markup, while the inter-

mediate firms behave competitively, thus abstracting from the balance of

market power among firms that trade with each other. The exception is

Acemoglu and Tahbaz-Salehi (2020), that follows a mixed approach: input

prices are taken as given when firms decide their input mix, but are then

determined in equilibrium through a link-level alternating offers game, re-

lying on exogenously specified bargaining weights. My results complement

theirs, providing a model that does not rely on the choice of exogenously

specified bargaining weights.

Except for Acemoglu and Tahbaz-Salehi (2020), all these papers feature

also the implicit or explicit assumption that firms do not internalize the

effect of their decisions on sectors/firms further downstream beside the

direct customers. Sometimes this is a consequence of the assumption of a

continuum of firms in each sector (and so sector-level aggregates are taken

as given by every individual firm),11 other times it is explicitly assumed.12

I contribute to the literature on general equilibrium with market power

by providing a fully strategic model of the production side with endoge-

nous market power and firm-to-firm trade; furthermore, the game does not

depend on price normalization, and can incorporate general assumptions

on owner’s preferences as in Azar and Vives (2021). In the recent literature

on “general oligopolistic competition” (Azar and Vives (2021), Azar and

Vives (2018) and Ederer and Pellegrino (2022)) do not consider firm-to-

firm trade. An older related paper is Nikaido (2015), who also uses the

11This is the case in, e.g. Baqaee (2018) and various others listed in the literature.
12E.g., in Grassi (2017), Kikkawa et al. (2019).
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market clearing conditions to back up quantities as functions of prices, but

his method is limited to Leontief technology. In the literature on general

equilibrium matching Fleiner et al. (2019) study firm-to-firm trade with dis-

tortions that are exogenous wedges rather than the outcome of a strategic

setting as in the present paper.

1 The Model

In this section I introduce the primitives of the model, that is the firms and

their technology, the input-output network, and the utility of the consumer.

Firms play a game in which the strategies are supply and demand schedules.

Finally, I introduce the technical assumptions needed for the subsequent

results.

1.1 Setting

Firms and Production Network There are N firms and M goods:

their sets are respectively denotedN andM. Each good might be produced

by more firms, and each firm may produce more than one good. I write

i → g if firm i produces good g, and g → i if firm i needs good g for

production. Each firm produces using labor, and a set of inputs produced

by other firms, which I denote asN in
i . The set of goods produced by firm i is

N out
i . The consumers’ utility depends directly on a subset of goods, denoted

C ⊆ M. Firms, goods and the connections defined above define a directed

bipartite graph G = (N ,M, E), where E = {(i, g) | i → g or g → i} is

the set of existing connections. I refer to G as the input output network

of this economy. Note that in this setting, a good is identified by the fact

that is exchanged by a number of firms for a specified price. That is, the

framework can accommodate for a firm selling the same physical good to

different groups of customers for different prices: simply, this case would

show up in the model as two distinct goods. I denote douti = |N out
i | the

out-degree (number of outputs) of i, and dini = |N in
i | the in-degree (number

of inputs) of firm i, excluding labor.

Remark 1.1. In the case in which each firm produces only one good, and

the goods are all distinct, we can identify the sets of firms and goods and
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Figure 1: Left: bipartite representation of the production network: the
circles are the firms, the squares are goods. An arrow from a good to
a firm means the firm buys the good, an arrow from a firm to a good
means that the firm sells the good. Right: classic representation of the
network, where nodes are firms and links represent the flow of goods. In
this example, in which each firm has one distinct output good, the two are
equivalent. In general this representation is ambiguous, because it does not
allow to see whether, e.g. 5 and 6 output is the same good or two distinct
goods.

say that two firms are connected if one is a customer of the other. This

is the more standard approach in the literature. Figure 1 illustrates the

standard (Left) and the bipartite (Right) representation followed here, in

the example of a tree network.

The production possibilities available to firm i are described by a trans-

formation function Φi. This is a function of the input and output quanti-

ties, and also on a vector of stochastic parameters εi = (εig)g∈Ni
, one for

each good traded by i. These can be thought of as technological shocks, in-

creasing or decreasing the input quantity needed to achieve a certain level

of output. As in Mas-Colell et al. (1995), input quantities are negative,

while output quantities are positive. The production possibility set of firm

i is thus {(qgi)i→g, (qig)g→i, ℓi | Φi((qgi)g, (−qig)g, ℓi, εi) ≤ 0}. The reason to

describe the technology as a transformation function is, besides generality,

to treat symmetrically inputs and outputs: goods are allowed to be both,

depending on what is more convenient given the market conditions and the

implied prices. This a standard approach taken also in Mas-Colell et al.

(1995). In our context, it allows a considerable technical simplification,

allowing to abstract from corner solutions: negative quantities are allowed,
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they simply mean trade in the opposite direction.

The price of good g is denoted pg, so that for a firm buying and pro-

ducing quantities (qgi)i→g, (qig)g→i, ℓi, the nominal profit is:

Πi =
∑
g,i→g

pgqgi −
∑
g,g→i

pgqig − wℓi

Consumers There is a continuum of identical consumers or, equivalently,

a representative consumer. She gets utility U((cg)g∈C, L, εi,c) from a subset

of goods C ⊆ M, and disutility from labor L; similarly to the firms, I

am going to assume that the utility also depends on a vector of stochastic

parameters εc = (εg,c)g∈C, one for each good consumed. Denote the demand

for good i derived by U as Di,c, and the labor supply as L. The profits

of the firms are rebated to the representative consumer, so that the total

income is wL+Pro, where Pro =
∑

i Proi is the aggregate profit. Welfare

in this economy is the utility of the consumers in equilibrium: U(c∗, L∗),

where c∗ and L∗ are the equilibrium values of consumption and labor: since

the profits are rebated, such welfare also includes the producers surplus.

Notation Bold symbols are used to denote vectors of prices and stochas-

tic parameters: p is the vector of all prices, except the wage w, pin
i =

((pg)g∈N in
i
) are the prices of all input goods of firm i, and similarly pout

i

is the price vector for the outputs, so that p′
i = (pout

i ,pin
i )

′
. Similarly,

pc = (pg)g∈C is the vector of prices of goods consumed by the consumer.

The analogous notations hold for stochastic parameters, so that, e.g., ε is

the vector that stacks all the stochastic parameters of all firms.

When A is a function of many variables, ∇A = (∂1A, . . . , ∂nA)
′ denotes

the (column) vector of partial derivatives (the gradient). HA denotes the

matrix of second derivatives, that is the Hessian of A. When A is a vector

function of x, ∂xA denotes the square matrix with on each row the gradient

of Ai with respect to x (the Jacobian matrix).

If B is a matrix, B−i denotes the same matrix to which row and column

i have been removed. If b is a vector, b−i denotes the same vector to which

element i has been removed. B ≥ C denotes the fact that B−C is positive

semidefinite (even when they are not symmetric).
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The Game I: players and actions The competition among firms takes

the form of a game in which firms compete choosing in supply and demand

functions. This means that the players of the game are the firms, and the

actions available to each firm i are a family of functions defined over a set Fi

of tuples of input-output prices, wage, and a set of firm-specific stochastic

parameters Ei: Si : (w,pi, εi) ∈ Fi × Ei → Rdi+1, where Fi × Ei ⊂ R2(di+1).

Such functions are called schedules, and Si = (Si,−Di,−ℓi), composed by

profiles of supply functions for outputs Si = (Sgi)i→g, demand functions for

intermediate inputs Di = (Dig)g→i, and for labor ℓi.
13 The set of feasible

supply and demand schedules for firm i (defined below) is denoted Ai, and

A =
∏

i∈N Ai.

In the general model of this section we are not restricting traded quan-

tities to be positive. This is a matter of interpretation: since trade has

a direction, negative quantities can simply be interpreted as trade flowing

in the opposite direction.14 This approach simplifies the analysis because

rules out corner solutions in which firms decide not to buy some inputs (or

sell some outputs) at all.

The Game II: prices and payoffs To complete the definition of the

game, we have to define the payoffs. These are, in short, the expected

profits calculated in the prices that satisfy the market clearing conditions.

The market clearing conditions are:∑
j,g→j

Djg(pj, w, εj) =
∑
k,k→g

Sgk(pk, w, εk) if g ∈ M

Dcg(pc, w, εc) =
∑
k,k→g

Sgk(pk, w, εk) if g ∈ C∑
i

ℓi(pi, w, εi) = L(w,pc, εc)

13The sign convention makes formulas simpler allowing the derivative to be positive
semidefinite.

14Indeed, this is the interpretation followed by classic treatments of production theory,
such as Mas-Colell et al. (1995).
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Define a function MC : RM ×E → RM such that (normalizing the wage to

1):

MCg =
∑
k,k→g

Sgk(pk, w, εk)−
∑
j,g→j

Djg(pj, w, εj) if g ∈ M

MCg =
∑
k,k→g

Sgk(pk, w, εk)−Dcg(w, pc, εc) if g ∈ C (1)

Throughout the paper I am going to assume that Walras’ law is specified

and the schedules are homogeneous of degree zero. Hence the market clear-

ing conditions can be stated as MC(p, w, ε) = 0. Formally, we have the

following definition.

Definition 1.1 (Pricing function and payoffs). Call E = ×i∈NE . Define

a feasible pricing function as a function (p∗, w∗) : E → RM such that

MC(p∗(ε), w∗(ε), ε) = 0 for all ε ∈ E .
The payoff of firm (player) i is the mapping from supply and demand

schedules in Ai to real numbers defined by the profits, normalized by the

wage:

πi(Si, Di, ℓi) =

EF

(∑
g,i→g

p∗g(ε)Sg,i(p
∗
i (ε), w

∗(ε), εi)−
∑
g,g→i

p∗g(ε)Dig(p
∗
i (ε), w

∗(ε), εi)

−w∗(ε)ℓi(p
∗
i (ε), w

∗(ε), εi)) /w

In summary, we defined a game: G = (N , (Ai)i∈N , (πi)i∈N ). Propo-

sition 1 below shows that the pricing function exists, so the payoffs are

well defined, and moreover that the equilibrium does not depend on the

normalization of prices. I call a Nash equilibrium of this game a Supply

and Demand function equilibrium. Notice that the equilibrium defines a

probability distribution over all the endogenous objects; prices, quantities,

hence welfare.

Generalizations: objectives of the firm While the price normaliza-

tion is inconsequential, the uniform normalization of profits is. Hence, in

the appendix (Section 2) Theorem 1 and 2 are proven under the more gen-
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eral assumption that there are two distinct types of agents, workers and

owners, and firms optimize the indirect utility of shareholders, following

Azar and Vives (2021). The construction in the main text corresponds

to the case in which owners are identical and only value a good produced

independently from the network, whose price is in fixed proportion with

the wage. This is equivalent to the approach followed in Ederer and Pelle-

grino (2022), and the polar opposite of the assumption maintained in Azar

and Vives (2021), in which owners have the same utility as consumers.

Both are evidently abstractions: in the main text I follow the former to for

two reasons: first, our focus is on the effect of endogenous market power

on firm-to-firm trade, rather than the interactions of market power and

owner’s incentives, that are instead the focus of Azar and Vives (2021).

1.2 Assumptions

In this paragraph I collect all the assumptions needed for Theorems 1 and

2.

Assumption 1 - Demand Consumers have aggregate demand Dc that

has negative semidefinite jacobian with corank 1 with respect to both

prices pc, w. It is positive definite with respect to stochastic param-

eters εc; Dc is positive and differentiable. Finally, if for a converg-

ing sequence of price vectors (pn, wn) → (p∗, w∗) we have that the

limit satisfies p∗g = 0 for some good g, then the demand for that

good diverges: lim(pn,wn)→(p∗,w∗) Dcg(p
n, εc) = ∞. Moreover, con-

sumer preferences give rise to a labor supply function ℓS, nonnega-

tive and differentiable. If for a converging sequence of price vectors

(pn, wn) → (p∗, w∗) we have that the limit satisfies w∗ = 0, then the

consumer stops working: lim(pn,wn)→(p∗,w∗) ℓ
S(pn, εc) = 0.

Assumption 2 - Technology The transformation function Φi is differ-

entiable, convex and increasing in the quantities qi = (qout,−qin):

∇Φi >> 0. It satisfies the Inada condition that limqj→0 ∂qjΦi = +∞.

The joint support of the distribution F of all stochastic parameters

ε = ((εi)i∈N , εc), call it E , is the closure of an open set, bounded in

11



norm by Ke (hence compact), and the distribution admits a differen-

tiable density f .

Assumption 3 - Feasible schedules Define Ai as the set of schedules

such that:

a) Homogeneity each schedule Si is homogeneous of degree 0 in pi, w;

b) Feasibility each schedule Si satisfies the technology constraint, that is,

for any possible (pi, w, εi), it must be:

Φi(Si(pi, w, εi), εi) ≤ 0 (2)

c) Regularity the schedules Si are infinitely differentiable and have Jacobian

derivative with respect to prices ∂pi,wSi that is positive semidef-

inite with rank di−115; the derivative with respect to stochastic

parameters ∂εiSi is positive definite.

d) Bounds The feasible schedules are uniformly bounded in the sup norm:

there is aKS such that ∥Si(pi, w, εi)∥∞ = suppi,w,εi
∥Si(pi, w, εi)∥2 ≤

KS. Moreover, the slopes are bounded too. That is, there exist

constants k and K such that for all pi, w, εi ∥∂εiSi∥2 ≤ K and

∂pi,wSi ≥ kIi, where ∥·∥2 is the spectral matrix norm, and Ii is

the identity matrix of appropriate dimension. Moreover, if for

a converging sequence of price vectors (pn, wn) → (p∗, w∗) we

have w∗ = 0 then the labor demands become larger than all other

demands: lim(pn,wn)→(p∗,w∗) −Si,ℓ(p
n, wn, εi) ≥ maxg∈Ni

{Sig}.

Denote A =
∏

i Ai.

Most of these assumptions are technical in nature: in particular, the

boundedness and regularity assumptions are crucial in establishing com-

pactness of the feasible set. The assumption on the limiting behavior says

that the schedules are such that for extreme values of prices, at least on

demand or supply diverges: this is used to show existence of a positive

market clearing price vector. As part of the proof of Theorem 1 I am going

to show that there is a bounded set of prices, bounded away from zero,

where we can focus without loss of generality.

15The rank cannot be maximum because of homogeneity in prices.
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For a given vector of parameters εi, the assumptions on the trans-

formation function are quite standard: if the firm has a single output y

produced with a strictly concave increasing production function fi (for ex-

ample a CES with decreasing returns to scale), then Φi(y, q1, . . . , qn) =

y − fi(−q1, . . . ,−qn, εi) (remembering that negative quantities represent

inputs) is indeed convex and increasing in the q variables. The assump-

tions on stochastic parameters guarantee that they represent productivity

parameters, each of which has an independent effect.

The regularity and boundedness assumptions 3c) − d) guarantee that

the demand and schedules are well behaved, enough to solve the market

clearing system. The various boundedness assumptions are useful for var-

ious technical steps, and ultimately to guarantee compactness of the set

of schedules, that is necessary to use the Schauder fixed point theorem in

Theorem 1.

Example 1. Standard Supply Function Equilibrium

The model by Klemperer and Meyer (1989) can be seen as a special

case of this setting, in which there is only one sector, the network G is

empty, the only uncertainty is on the consumers, and the labor market

is competitive. Their setting is a “partial” equilibrium one, in which the

consumers do not supply labor to firms but appear only through a demand

function D(·), and firms have a cost function for production C(·), that

does not explicitly represent payments to anyone. Nonetheless, the game

played by the firms is precisely the same: if the transformation function is

Φ(qi,−ℓi) = qi − C(ℓi), and the consumer utility gives rise to a demand of

the form Dc + εc, the game G played by firms is precisely the same as in

Klemperer and Meyer (1989).

1 23

C

Figure 2: The (degenerate) production network of Example 1: there is only
1 Sector whose firm sell to the consumer.
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U D

U1 U2 D1 D2

Consumers

U1 U2

D1 D2

Consumers

Figure 3: A layered supply chain. Left: bipartite representation, the
squares represent goods, the circles firms. Right: firm-only representa-
tion.

Example 2 (Regular layered supply chain). A regular layered supply chain

is a production structure in which firms are divided inm layers, as in Figure

3. There are m goods, each produced by all the firms in a layer; there are

n firms per layer. Firms in layer i + 1 sell to firms in layer i, firm 0 sells

its output to the consumer, and firms in layer m are the only ones to use

labor.

The following example illustrates the simplest assumption on the be-

havior of owners, that will also be useful in the parametric model.

Example 3. Owners consuming an outside good.

If the owners’ utility only depends on one good, o, and, moreover, such

a good is produced from a continuum of firms that use only labor as input

(hence are isolated from the network), with constant marginal cost, then

two things happen. First, the indirect utility of the owners of group i is

simply πi =
πi

po
, that is the profit divided by po, that is the same across

owners: Pi = Pj = po. Second, that the price of such a good is equal to

marginal cost po = Co, hence it is itself a constant. It follows that in this

case it is without loss of generality to assume that managers optimize the

profits of the firms.

2 Results

In this section I present Theorems 1, 2 and Corollary 2.1. First, I prove as

a preliminary result that a pricing function exists and is unique, hence the
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payoffs above are well-defined (Proposition 1 below), and moreover the set

of feasible prices is bounded, that is going to be important for the argument

of Theorem 1.

2.1 The game is well-defined

We show that under our Assumptions, the game is well-defined and inde-

pendent of the price normalization.

Proposition 1 (Feasible pricing and price normalization). 1. There ex-

ist a feasible pricing function (p, w) : E × A → RM
+ , and is unique

up to normalization. Moreover, the payoffs are independent of price

normalization.

2. Normalizing the wage to 1, the image of the pricing function P =

p(E ×A) is bounded, that is there is a kp > 0 such that for any p ∈ P
∥p∥2 < kp.

The proof relies on the regularity assumptions 3c) and the bounds in

3d) to show that the pricing function exists thanks to a global form of

the implicit function theorem. The uniqueness up to normalization follows

from homogeneity of the schedules, that translates into homogeneity of the

excess supplyMC. The second part follows from the bounds in Assumption

3d) and an application of the mean value theorem.

Thanks to the normalization by the wage, the profits depend only on

price ratios, and so the game does not depend on the specific price normal-

ization. For this reason, from now on, I am going to focus on homogenized

schedules obtained normalizing the wage to 1, writing, with a slight abuse

of notation, Si(pi, εi) for Si(pi, 1, εi). Moreover, since the technology con-

straint is binding, from now on we focus on Si,−ℓ = (Si,−Di), that is the

profile of schedules for input and output goods excluding labor. Because

of the above assumptions ∂pi
Si is positive definite.

2.2 Existence

The main argument is a fixed point theorem. The main obstacle is estab-

lishing compactness of the set of feasible schedules. In order to do this it
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is crucial first to limit the domains of the schedules to a compact set. In

general, for a compact domain D, define A(D) as the set of schedules in A
that are restricted to D × E . To be precise, Si is restricted to the projec-

tion of D on the space of input and output prices of i, call it Di. Second,

it is necessary to consider the closure of A(D), denoted Ai, with respect

to the ∥·∥∞-norm on the set of schedules: ∥Si∥∞ = maxD×E |Si(pi, w, εi)|,
which is well defined thanks to the compactness of D × E . Lemma A.2

in the Appendix shows that the pricing function is Lipschitz, and so can

be extended without problems to A(D). To obtain compactness, thanks

to the Ascoli-Arzelà theorem, the last piece we need is to choose an upper

bound K to the norm of the price derivatives ∥∂pi
Si∥2 < K:denote A(D)

K

the set of schedules that satisfie this bound. The formal statement of the

theorem is as follows.

Theorem 1.

If the best reply correspondences are convex-valued, there exists a compact

domain P̃ ⊆ P such that the game G has a pure strategy Nash equilibrium

in A(P̃)
K

.

Furthermore, all prices in P̃ can arise for some value of ε, and P̃ is

the closure of an open set (in particular, it has positive measure).

The second part of the statement guarantees that, thanks to our as-

sumptions on stochastic parameters, the equilibrium spans a set of prices

that is “large” enough, in particular in which derivatives are meaningful.

The proof of the first part applies the Ky Fan fixed point theorem to

A(P̃ )
K

. Via a standard argument the differentiability and boundedness

assumptions on the schedules in A(P̃ )K are enough to guarantee equicon-

tinuity, and applying the Ascoli-Arzelà theorem we obtain that the closure

is compact. Assumption 2 on the technology is also sufficient to show that

A(P̃)
K

is convex. Hence, if the best reply is convex-valued, there exist a

fixed point by Ky Fan’s fixed point theorem. For the second part, thanks to

the assumptions of positive definiteness of ∂εiSi we can show that the pric-

ing function is locally (right-)invertible, and this allows to conclude that

the set of feasible prices is the closure of an open set. The formal proof is

in Appendix A.2.
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2.3 Necessary conditions for equilibrium

In this section I derive necessary conditions for best replies and describe

the insights that emerge on the structure of the equilibrium.

The necessary conditions are best expressed in terms of the residual

schedule, the schedule that collects the residual demands and supplies that

the firm faces on all its input-output connections. It can be formally con-

structed as follows.

Definition 2.1 (Conditional pricing function and residual schedule). Given

a profile of schedules (Si)i∈N , the pricing function conditional on i is the

function p−i(· | i), defined on pi, w, ε that satisfies the market clearing

conditions 1, excluding those relative to the input and output prices of i.:

MCg(p−i(pi, w, ε | i),pi, ε) = 0 ∀g /∈ Ni

The residual schedule of firm i is:

Sr(pi, w, ε) = −
∑
j ̸=i

Sj(pj(pi, w, ε | i), εj)

The next lemma sums up some properties of the residual schedules that

are going to be useful.

Lemma 2.1. Under Assumptions 1,2 and 3, the residual schedule is ho-

mogeneous of degree zero in pi, w, differentiable, has positive semidefinite

derivative ∂pi,wS
r
i of corank 1 (i.e. has maximum rank minus 1).

Example 4. (Regular layered supply chain)

The easiest setting in which to understand the mechanics of the residual

demand is the layered production chain illustrated in 3 and defined below:

respectively, firm U1 and U2, and D1 and D2 produce perfect substitutes,

and have the same technology.

When other firms play a profile of schedules S−i, the demand curve

faced by U1 is:

DD1(p
∗
2, p1, εD) +DD2(p

∗
D, pU , εD)︸ ︷︷ ︸

Direct demand from sector 2

− SU1(pU , εU)︸ ︷︷ ︸
Supply of competitor
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for different choices of a supply function SU1, different prices p1 realize, as

functions of the realizations of ε2. But naturally, given profile S−i also p∗D
is endogenous, and a rational U1 takes this into account when optimizing.

In particular the price pD is determined by the market clearing conditions

for good D:

SU1(pD, pU , εU) + SU2(pD, pU , εU) = D(pD) + εc

as a function of pU and the stochastic parameters. If we assume that all

other players are using linear supply and demand schedules S1U(pU , εU) =

BU(pU −εU), D2D(pD, pU , εD) = B2D(pD−pU −εD), using the downstream

market clearing condition to solve for pD we get the residual demand U1

faces as function of pU and the εs alone:

Dr
U =

2BD

Bc + 2BD

(Ac + εc −BcpU)−BU(pU − εU) (3)

which clarifies how, even if each firms acts ”locally” choosing its own input

and output prices, actually the problem depends from the parameters of

the whole economy.

The first lemma guarantees that under the imposed assumption, the

pricing function spans all the possible prices in P .

Theorem 2.

Remember that Si,−ℓ denotes the schedule played by firm i excluding labor

demand (and similarly for Sr
i,−ℓ). Assume a schedule profile Si ∈ A is

twice differentiable, the spectral norm ∥∥2 of the schedules is differentiable,

and the boundary of P̃ is differentiable. Si is an interior best reply to the

profile S−i only if satisfies the following partial differential equation for all

(pi, εi) ∈ P × E:

E
[
([∂pi

Si,−ℓ] + [∂pi
Sr
i,−ℓ])

−1
(
−Si,−ℓ + ∂pi,wS

r
i ((pi, 1)

′ − λ∇Φi)
)
| pi, εi

]
= 0

(4)

and the technology constraint: Φi(Si, εi) = 0.

The proof in is Appendix A.3. The first-order condition can be under-

stood as follows. The term −Si,−ℓ + ∂pi
Sr
i ((pi, 1)

′ − λ∇Φi) represents the
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sensitivity of the profit to a variation in the prices. In this context the

“marginal cost” of producing an additional unit of output is an ill-suited

concept: indeed, the standard marginal cost is intimately connected with

the assumption of taking input prices as given, being the multiplier in the

standard cost minimization problem. In our setting, where firms have some

market power on all input and output markets, the relevant generalization

is the marginal value of relaxing the technology constraint, which is ex-

actly the multiplier λi, times ∇Φi, that represents the marginal product

of each input/output. Hence the vector (p′
i, 1)

′ − λi∇Φi can be thought

as the vector of markups (for outputs) and markdowns (for inputs). The

reason why the schedule without labor demand Si,−ℓ appears in the ex-

pression is because we normalized the wage to 1: this is inconsequential,

as we showed that price normalization does not affect the payoffs nor the

schedules. Then, we can see that this term of the FOC has a very similar

intuition to the standard Lerner equation: the higher the responsiveness

of demand/supply to prices, the smaller the markups/markdowns that can

be charged.

The term ([∂pi
Si,−ℓ]+[∂pi

Sr
i,−ℓ])

−1 represents the sensitivity of the prices

to a variation in the schedules. Again, the schedules without labor demand

appear because of the normalization of the wage. The key difference from

Klemperer and Meyer (1989) is the presence of the expectation in the ex-

pression. The reason is somewhat different from Holmberg and Philpott

(2018) and Wilson (2008), in which the equilibrium is not ex-post because

of the possibility of binding transmission capacities in an otherwise linear

transmission network. To understand why this is the case, consider Figure

4. A seller faces a residual demand of the form εDD
r
U + εc, where εD and

εc are two distinct sources of uncertainty. Computing first the optimal

prices for given εD, and varying εc, we find the red curve (Left panel). This

is what happens computing the best reply in a standard supply function

competition. But now note that εD changes the slope of the residual de-

mand, so is also affecting the optimal price, and in such a way that the

optimal price realizes a different demand quantity. Hence if we represent

on the same graph (Right panel) the optimal price quantity pairs varying

εD, they do not lie on the red line, they form another curve. Hence, no

single supply function can touch all the ex-post optimal points, but has to
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trade-off between them, depending on the relative probability. This is the

reason why the expectation appears in the necessary conditions. Moreover,

in general the optimization is also not pointwise, in the sense described

by Rostek and Yoon (2021a). Namely, the optimization in schedules is

not equivalent to a pointwise optimization in quantities traded, taking the

price impacts as given. It would be only in case the price sensitivity term

([∂pi
Si,−ℓ] + [∂pi

Sr
i,−ℓ])

−1 drops from equation 4, which happens only when

is measurable with respect to pi, εi, as discussed in the following section.

In general such a sensitivity might depend on the realization of the residual

uncertain parameters in a way that correlates with the slope of the resid-

ual demand, modifying the marginal impact of changing the schedule, and

hence the optimal choice.

Remark 2.1 (Optimization is not pointwise unless residual schedule is

linear). The FOC makes it clear that the equilibrium is not in general ex-

post, since the uncertainty about the prices (and stochastic parameters)

in other markets crucially enters the equation. It is useful to note that

the optimization is also not pointwise, in the sense described by Rostek

and Yoon (2021a), unless the residual schedule is linear in the stochastic

parameters. By pointwise here is meant that the optimization in schedules

is equivalent to a pointwise optimization in quantities traded, taking the

price impacts as given. Such an optimization would yield as a FOC:

E
[(

−S ′
i,−ℓ + (p′

i − λ∇Φ′
i)∂p,−1Sr

i −
p′
iSi

Pi

∇pi,−1Pi

)
1

Pi

| pi, εi

]
= 0

We can see that only if the residual schedule is linear the jacobian derivative

∂pSr is deterministic, and so the term ([∂pSi]−1+[∂pSr
i ]−1)

−1 drops from the

equation 4. For example, if we perform a similar exercise as in Rostek and

Yoon (2021a), where firms commit to “unconditional supply schedules”,

when the residual schedule is linear we find a similar result: optimization

is pointwise but not ex-post. When the residual schedule is not linear

the term ([∂pSi]−1 + [∂pSr
i ]−1)

−1 is present and so the optimization is not

pointwise.
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price

quantity

p(ε1c)

p(ε2c)

p(ε3c)

Supply function tracing
optimal prices for given εD

Residual demand
εDD

r
U + εc

price

quantity

Residual demand
εDD

r
U + εc

Optimal prices for different εD
and given εc

Figure 4: A supply function is not equivalent to ex-post price setting when
uncertainty has enough dimensions.

We can rewrite the equation as:

S ′
i = Epi

[(
(p′

i − λ∇Φ′
i)∂pSr

i −
p′
iSi

Pi

∇pi
Pi

)
(∂pSi + ∂pSr

i )
−1 | pi, εi

]
×

Epi
[
1

Pi

((∂pSi + ∂pSr
i )

−1 | pi, εi)]
−1

In case the owners consume an external good (Example 3), the equation

is reduced to:

S ′
i = (p′

i−λ∇Φ′
i)Epi

[
∂pSr

i (∂pSi + ∂pSr
i )

−1 | pi, εi
]
Epi

[((∂pSi+∂pSr
i )

−1 | pi, εi)]
−1

that clarifies the role of uncertainty: the markups do not only depend

on the responsiveness of the residual demand, but on the covariance of the

responsiveness of the residual demand and the excess demand. If the two

are independent, only the expectation of the slope of the residual demand

matters. In general no: because when adjusting the schedule firms take

into account both the variation in purchases from neighbors, and the vari-

ation in the expected prices: if the responsiveness of the residual demand

is high whenever the responsiveness of the excess demand is, then markups

are smaller: the intuition is that a high responsiveness of the excess de-
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mand moves the prices more than under independence, hence making the

responsiveness of the residual demand more stark.

The proof proceeds computing the Gateaux derivative along a direction,

then imposing that all Gateaux derivatives are zero: since this is true for

any direction ηi, this allows to conclude that the expression in the Theorem

is zero. Details are in the Appendix.

2.4 Unique best reply

In case the degrees of freedom of the firms are exactly the same as the

uncertain parameters they face we can prove that best replies are single-

valued. In this case the equilibrium is ex-post, and the partial differential

equation 4 boils down to an implicit equation. The key assumption needed

for this is the following:

Assumption 4-Measurability for each firm i, there exist a function fi

such that the residual demand is measurable with respect to (pi, εi),

that is, it satisfies ∂pSr
i (pi, ε) = fi(pi, εi).

The immediate consequence of this assumption is that the residual

schedule is completely known once we know pi and εi, hence there is no

residual uncertainty and hence the expectation in 4 is trivial. So, for an

interior solution for which the positive definite constraints are not binding,

the FOC reduces to:

(
−Si,−ℓ + ∂pi

Sr
i (p

′
i − λ∇Φi(−Sr

i , εi))
)
([∂pi

Si,−ℓ] + [∂pi
Sr
i,−ℓ])

−1 = 0

where now the term 1
Pi
([∂pi

Si,−ℓ] + [∂pi
Sr
i,−ℓ])

−1 simplifies away, and we are

left with:

Si,−ℓ = ∂pi
Sr
i ((pi, 1)− λi∇Φi(−Sr

i , εi)) (5)

This is an equation that directly defines the best reply schedule Si,−ℓ as a

function of prices and schedules played by competitors. Hence it is imme-

diate to conclude that in this context the best reply is unique. Moreover

we recover both the pointwise optimization and the ex-post equilibrium as

in Klemperer and Meyer (1989). We can summarize the above discussion

as follows.
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Corollary 2.1. Under Assumptions 1, 2, 3 and 4, if the constraints are

not binding (Ii = Ji = 0), the best reply is single valued in the interior of

A(P̃).

The measurability assumption is not vacuous. An example that satisfies

it for any network is when the profile of schedules played is linear, case to

which is devoted the companion paper Bizzarri (2025). In this case the

function fi is actually a constant, independent of ε and pi.The following is

another example, where it is not the functional form, but the structure of

the network that determines the measurability.

Example 5 (Regular layered supply chain). In the context of a regular

layered supply chain each firm has 1 degree of freedom, because it has to

decide a schedule for inputs and outputs, constrained by the technology.

Hence, it is sufficient one stochastic parameter to generate enough variation

in the realized prices to span the whole feasible set. Assume that the

only stochastic parameter is the one of consumer demand εc, while the

transformation functions of firms, and the schedules, are all deterministic.16

In this case the measurability assumption is satisfied, because, under the

assumptions above, realizations of the stochastic parameter εc are one to

one with price variation, for any firm. Details are in Online Appendix B.6.

Conclusion

This paper provides a way to model oligopoly in general equilibrium as

a game in which firms fully internalize their position in the supply chain

and have market power both over inputs and outputs, in an endogenously

determined way. I show that such features are desirable in a input-output

model with market power: if absent, both the aggregate and the relative

ranking of distortions due to imperfect competitions is crucially affected.

This suggests that, when modeling complex networks of large firms with

market power, simplifying assumptions might affect in a sizable way the

results. The parametric functional form introduced is suitable for quantita-

tive work, and the strategic complementarity structure of the equilibrium

16Or, equivalently, the distribution of εi is a Dirac for all i.

23



makes it computationally tractable: the exploration of the quantitative im-

plications of the supply and demand function equilibrium for the analysis

of market power is an interesting avenue for future research.

References

Acemoglu, D. and A. Tahbaz-Salehi (2020, July). Firms, failures, and

fluctuations: The macroeconomics of supply chain disruptions. Working

Paper 27565, National Bureau of Economic Research.

Ambrosetti, A. and G. Prodi (1995). A primer of nonlinear analysis. Num-

ber 34. Cambridge University Press.

Arkolakis, C., F. Huneeus, and Y. Miyauchi (2021). Spatial production

networks. Unpublished, Yale University .

Ausubel, L. M., P. Cramton, M. Pycia, M. Rostek, and M. Weretka (2014).

Demand reduction and inefficiency in multi-unit auctions. The Review

of Economic Studies 81 (4), 1366–1400.

Autor, D., D. Dorn, L. F. Katz, C. Patterson, and J. Van Reenen (2020).

The fall of the labor share and the rise of superstar firms. The Quarterly

Journal of Economics 135 (2), 645–709.

Azar, J. and X. Vives (2018). Oligopoly, macroeconomic performance, and

competition policy. Available at SSRN 3177079 .

Azar, J. and X. Vives (2021). General equilibrium oligopoly and ownership

structure. Econometrica 89 (3), 999–1048.

Baqaee, D. R. (2018). Cascading failures in production networks. Econo-

metrica 86 (5), 1819–1838.

Baqaee, D. R. and E. Farhi (2019). The macroeconomic impact of mi-

croeconomic shocks: Beyond hulten’s theorem. Econometrica 87 (4),

1155–1203.

Baqaee, D. R. and E. Farhi (2020). Productivity and misallocation in

general equilibrium. The Quarterly Journal of Economics 135 (1), 105–

163.

24



Bernard, A. B., E. Dhyne, G. Magerman, K. Manova, and A. Moxnes

(2022). The origins of firm heterogeneity: A production network ap-

proach. Journal of Political Economy 130 (7), 000–000.

Bernard, A. B., J. B. Jensen, S. J. Redding, and P. K. Schott (2018). Global

firms. Journal of Economic Literature 56 (2), 565–619.

Berry, S., M. Gaynor, and F. Scott Morton (2019). Do increasing markups

matter? lessons from empirical industrial organization. Journal of Eco-

nomic Perspectives 33 (3), 44–68.

Billingsley, P. (2008). Probability and measure. John Wiley & Sons.

Bizzarri, M. (2025). Multilateral market power in input-output networks.

Bornstein, G. and A. Peter (2022). Nonlinear pricing and misallocation.

Carvalho, V., M. Elliott, and J. Spray (2020). Supply chain bottlenecks

during a pandemic.

Carvalho, V. M. and A. Tahbaz-Salehi (2018). Production networks: A

primer. Available at SSRN 3310348 .

De Loecker, J., J. Eeckhout, and G. Unger (2020). The rise of market

power and the macroeconomic implications. The Quarterly Journal of

Economics 135 (2), 561–644.

Dhyne, E., A. K. Kikkawa, and G. Magerman (2019). Imperfect competi-

tion in firm-to-firm trade. Journal of the European Economic Associa-

tion.

Du, S. and H. Zhu (2017). Bilateral trading in divisible double auctions.

Journal of Economic Theory 167, 285–311.

Ederer, F. and B. Pellegrino (2022). A tale of two networks: Common

ownership and product market rivalry. Technical report, National Bureau

of Economic Research.

Fleiner, T., R. Jagadeesan, Z. Jankó, and A. Teytelboym (2019). Trading
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Appendix

A Proofs

As anticipated in the text, the proofs of this section are done under a more

general assumption for the payoffs, consistent with the literature on general

equilibrium oligopoly (in particular Azar and Vives (2021)), namely, that

firms optimize the indirect utility of their owners. The details are as follows.

Workers and Owners As in Azar and Vives (2021), there are two

types of agent: workers, and owners. There is a continuum of identical

workers or, equivalently, there is a representative worker, whose utility is

U((cg)g∈C, L, εi,c). The workers have aggregate demand Dw
c that has neg-

ative semidefinite jacobian with maximum rank (which is |C| − 1) with

respect to both prices pc and stochastic parameters εc

The owners, instead, do not work, but own the firms. They are a

continuum, partitioned in N groups, and owners in group i collectively

own all the shares of firm i. They have utility functions homogeneous of

degree 1, generating aggregate indirect utilities Vi =
Π
Pi
, where Πi is the

profit of firm i, Pi is a function of prices, homogeneous of degree 1 (the price

index relative to owners of group i) and differentiable. These assumptions

are enough to generate an aggregate demand that is differentiable and has

negative definite jacobian as in the main text.

As anticipated, firms optimize the indirect utility of shareholders. Hence

the payoff of firm i is:

πi(S) = E
Πi

Pi

= E

(∑
i→g

pg

Pi

Sg,i(pi, εi)−
∑
g→i

pg

Pi

Dig(pi, εi)−
w

Pi

ℓi(pi, εi)

)

Note that this depends only on ratios pg/Pi, hence not on price normal-

ization. The assumption followed in the main body, of firms maximizing

profits Πi, can be recovered as a special case of this setting assuming that

the owners’ utility only depends on only one good, o, and, moreover, such

a good is produced from a continuum of firms that use only labor as input

(hence are isolated from the network). Hence in this case the price indices

are all Pi = w, and we recover the main text formulation.
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A.1 Proof of Proposition 1

We are going to need the following Lemmas, proved in the online Appendix.

Lemma A.1. Under Assumptions 3c, d) the map MC has positive defi-

nite jacobian derivative ∂pMC. Moreover, there are k and K such that

∥∂pMC∥2 ≤ K and ∥∂pMC−1∥2 ≤ k−1.

Lemma A.2. There is a constant Kp such that the derivatives of the pric-

ing function with respect to the stochastic parameters, and the (Fréchet)

derivatives with respect to the schedules are bounded above: ∥∂εp∥ ≤ Kp

and ∥∂Si
p∥op2 ≤ Kp. Here ∥·∥op denotes the operator norm: relative to the

∥·∥∞ norm in the domain: if A is a linear operator Ai → RM , ∥A∥op =

max{∥ASi∥2 | ∥Si∥∞ = 1}.

Part 1 First, focus on schedules in A. We want to show that for every ε

there is a price vector satisfying the market clearing conditions. For every

given ε the map z(p) = −MC(p, ε) satisfies all the properties of the excess

demand in Proposition 17.C.1 in Mas-Colell et al. (1995), except property

(v) that has to be replaced with:

(v′) if lim
(pn,wn)→(p∗,w∗)

with p∗g = 0 or w∗ = 0

then lim
(pn,wn)→(p∗,w∗)

z(pn, wn) ≤ max
g∈Ni

{zig}

this follows from the assumption 1 that the demand diverges when some

good prices go to zero, and the assumption 3d) that labor demand grows

more than other demands when the wage tends to zero.

Hence, an equilibrium price vector exists with p, w >> 0.

Moreover, the Lemma A.1 guarantees that the jacobian of z is negative

definite, so that we can use a global inversion theorem (Theorem 3.1.8 in

Ambrosetti and Prodi (1995)) to conclude that the equilibrium is unique.

Now, using the implicit function theorem applied to the map (p, ε) 7→
(MC(p, ε), ε), we can conclude that p(ε) is differentiable on E̊ , the interior
of E . The Lemma A.2 guarantees that it is Lipschitz, so it can be extended

uniquely to the whole of E .
Now let us consider schedules in the closure of A. Lemma A.2 guaran-

tees that the map p : E × A → RM is Lipschitz, hence it can be extended
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in a unique way to the closure of the domain.

So far, we produced a unique function p(w, ε) for each fixed w. Now

consider two functions such thatMC(p(w, ε), w, ε) = 0 andMC(p′(w′, ε), w′, ε) =

0. Since MC is homogeneous of degree zero:

MC(p′(w′, ε), w′, ε) = MC(p′(w′, ε)w/w′, w, ε) = 0,

and so p′(w′, ε)w/w′ = p(w, ε), that is, the functions are the same up to a

positive normalization. Since the payoffs only depend on price ratios, they

are independent of the normalization chosen.

Part 2 Fix a schedule S i ∈ Ai and a value ε, and call St = tS + (1− t)S
and εt = tε′+(1− t)ε. By the mean value theorem in Banach spaces (e.g.,

Proposition 7.2 in Luenberger (1997)):

∥p(S, ε′)− p(S, ε)∥2 ≤

sup
t∈[0,1]

∥∂Sp(εt,St)∥op∥(S − S)∥∞ + sup
t∈[0,1]

∥∂εp(εt,St)∥2∥(ε′ − ε)∥2

Now by the Lemma A.2 and Assumption 3d, such a norm is bounded above

by kp = 2KpKS + 2KpKe, and in particular the image of E × A via p is

bounded by kp.

A.2 Proof of Theorem 1

Thanks to Proposition 1 the set P is bounded; since it is closed by defi-

nition, it is compact, hence all schedules and their derivatives have upper

bounds on it.

The set of all differentiable schedules that are bounded, with bounded

derivatives, and compact domain P × E is equicontinuous (Theorem 14.2

in Treves (2016)), hence, by the Ascoli-Arzelà theorem, its closure is com-

pact in the sup-norm. The set A(P)
K

is a subset of such a compact set.

Moreover, it is closed by definition, being the closure of A(P)K . Hence it

is a closed subspace of a compact set, and so is compact. Since the pricing

function is Lipschitz, it can be extended uniquely to such closure: hence

the game is well defined also on A(P)
K
.
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Since the profit function is continuous, the best reply problem has a

solution. Moreover, by the maximum theorem the solution correspondence

is upper-hemicontinuous (in particular, if single valued, is a continuous

function).

It remains to prove that A(P)K is convex. Consider Si and S ′
i in Ai(P).

All the regularity assumptions are inherited by any convex combination,

and it has the same domain by definition. The bounds are also inherited:

kIi ≤ α∂pi
Si + (1− α)∂pi

S ′
i and ∥α∂pi,wSi + (1− α)∂pi,wS

′
i∥2 ≤ K

and similarly for ∂εiSi. By convexity of Φ, the technology constraint is also

satisfied:

Φi(αSi + (1− α)S ′
i, εi) ≤ αΦi(Si, εi) + (1− α)Φi(S ′

i, εi) ≤ 0

which is what we wanted to show.

So, if best replies are convex-valued (or in particular single valued), the

best reply map is continuous on a set A(P)
K

that is compact and convex,

hence by the Ky Fan fixed point theorem the game has an equilibrium.

Denote the equilibrium profile as S∗. Now, it is possible to further

restrict the domain of each schedule to P̃i = pi(E ,S∗), that is the image

of E via the equilibrium profile. This in general might be smaller than

P . Nevertheless, the profile S∗ remains an equilibrium. Indeed, all the

price values in P \pi(E ,S∗) have probability zero, so they do not affect the

payoffs. Hence we can restrict each schedule to P̃i = pi(E ,S∗), to have an

equilibrium in which the whole domain is spanned. Finally, the following

Lemma (proven in the Online Appendix) uses the positive definiteness of

∂εiSi to guarantee that each P̃i is the closure of an open set.

Lemma A.3. Under Assumptions 1-3, Pi is the closure of an open set.

A.3 Proof of Theorem 2

We derive necessary conditions for an interior solution in A. The necessary

conditions for optimization are the usual Lagrange multiplier equations
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(Luenberger (1997)). The Lagrangian is:

Li(Si) = E
[
p′
i,−ℓSi,−ℓ + S1 − λiΦi(Si, εi)

]
where pi(S, ε) is the unique pricing function (from Proposition 1) such that

the wage is 1.

We have to show that this is Fréchet differentiable, and the necessary

condition is setting the Fréchet differential to 0. To do so, in the following

Lemma (proven in the Online Appendix) we compute the Gateaux differ-

ential in the direction ηi. Under the assumption we made on ηi, it is always

possible to choose h small enough such that Si + hηi ∈ A.

Lemma A.4. Assume that ∂P̃ has differentiable boundary. The Gateaux

differential of the Lagrangian in a direction ηi, satisfying the above assump-

tions, is:17 E
[
η′i,−ℓGi

]
, where:

Gi = ([∂pi
Si,−ℓ]+[∂pi

Sr
i,−ℓ])

−1

(
Sr
i + ∂pi,−ℓ

Sr
i,−ℓ((pi, 1)− λi∇Φi)−

p′
iSi

Pi

∇pi,−1Pi

)
The assumption of differentiable boundary is necessary to apply the

divergence theorem, and integrate by parts the derivative of the constraints,

eliminating the derivatives of ηi from the expression.

Now by the law of iterated expectations we can rewrite the expectation

as E[η′i,−ℓ(pi, εi)E[Gi | pi, εi]], and by the arbitrariness of ηi the FOC is

equivalent to E[Gi | pi, εi] = 0. Using Lemma A.3 to conclude that Sr
i =

−Si for all the possible prices, we obtain the expression in the main text,

noting that in that case ∇pi,−ℓ
Pi = 0.

17Note that the component of η relative to labor does not directly enter the equation,
but this is not strange because it is implicitly determined by the technology constraint.
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B Additional proofs of section 2

B.1 Proof of Lemma A.1

Part I: Positive definite

By the lifting procedure as in Malamud and Rostek (2017), we can

consider every supply function as defined on the set of all prices instead

then the prices of the neighboring goods, and similarly having values in

tuples of all the goods: Ŝi : RM
+ → RM . The consistency required is, of

course,

Ŝi(pi,p−i, ε) = Si(pi, ε)∀g ∈ Ni Ŝgi(pi,p−i, ε) = 0 ∀g /∈ Ni

With this notation, we can write the excess supply function as:

MCg =
∑
i

Ŝgi − D̂c + ℓ̂c

Denote Si,−ℓ the schedule of i excluding (if present) labor demand. More-

over, MC is homogeneous of degree zero, hence naturally we cannot invert

it as a full function of prices. For convenience we consider it a function of

p−w, the vector of prices excluding the wage.

The Jacobian derivative is:

∂pMC =
∑
i

∂pŜi,−ℓ − ∂pD̂c

This is symmetric if all the derivatives are symmetric. We are going to

prove that, once we normalize by a price, this is also positive definite. By

Theorem 6 in Gale and Nikaido (1965), this implies that the realized prices

are well defined on any convex domain.

Considering any vector x ∈ RM \ {0}, we have

x′∂pMCx =
∑
i

x′(∂piŜi,−ℓ − ∂pD̂)x =
∑
i

x′
i∂piSi,−ℓxi + x′

c(−∂pDc)xc

where, as for the prices, we denote xi = (xg)g∈Ni
. Now if there is a λi

such that pi = λi∇Φi for each i, then Si,−ℓ is positive definite, because the

original schedules have co-rank 1. In this case, it follows that ∂pMC is
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positive definite. If not, Si,−ℓ has co-rank 1, and satisfies:

∑
g

uig[Si,−ℓ]hg = 0∀h uig =

(
1

ph
pg −

1

∂phΦi

∇pΦi

)
for some h ∈ Ni

So, if there is a nonzero vector x such that x′∂p−w
MCx = 0, it must

be xi = ui for some i, and xi = 0 otherwise. Where, since ui is nonzero,

and the sum is null, at least two entries of the vector ui are nonzero,

corresponding to, say, good g and h. Then xg = uig ̸= 0, and xg is also

an element of xj, so also xj = uj. Repeating the reasoning, we can go on

until we reach a firm k such that the good g such that ukg ̸= 0, and g is a

good consumed by the consumer: in that case xg cannot be zero, and we

reach a contradiction. Hence the quantity x′∂pMCx is positive, and the

jacobian ∂pMC is positive definite.

Part II: bounds

For the lower bound, by Assumption 3d) we have:

k
∑
i

Îi ≤ ∂pMC =
∑
i

∂pi
Ŝi,−ℓ − ∂pD̂c

where Îi is the lifting of the identity matrix relative to i, having a 1 on

the diagonal whenever g, h are both traded by firm i, and zero otherwise.

The sum of such matrices is still diagonal. In particular, the entry in

position g, h is ngk, where ng is the sum of firms that trade good g, plus

(eventually) the consumer. Anyhow this is larger than 2k, so the matrix is

bounded below, and so it can be found a k such that kI ≤ K
∑

i Ii. Now by

definition this is the same as kI ≤ H(∂pMC), where H(A) = (A + A′)/2

denotes the symmetric part of a matrix. For a property of the positive

semidefinite ordering, it follows that k−1I ≥ H(∂pMC)−1, that implies

k−1 ≥ ∥H(∂pi
MC)−1∥2. By Lemma 2.1 in Mathias (1992) it follows that

∥∂pi
MC−1∥2 ≤ ∥H(∂pMC)−1∥2 ≤ k−1.

Concerning the upper bound, it is sufficient to apply subadditivity of

the norm and again Assumption 3d)

∥
∑
i

∂pi
Ŝi,−ℓ − ∂pD̂c∥2 ≤ (N + 1)K = K
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B.2 Proof of Lemma A.2

We have to prove that the Fréchet derivative of p with respect to the

schedules is bounded. By the implicit function theorem is:

∂Sp = −(∂pMC)−1∂SMC

We have to compute the Gateaux derivatives in all the directions η that

satisfy the constraints:

∂SMC(η) = ∂hMC(S + hη,p, ε) = MC(η,p, ε)

and MC(η,p, ε) =
∑

i η̂i(p, ε) where η̂i is the lifting of η, as in the proof

of Proposition 1.

Hence ∥(∂pMC)−1∂SMC∥op2 = max∥η∥∞=1∥(∂pMC)−1MC(η,p, ε)∥2 ≤∑
i∥ηi∥2 = NKS. Moreover, from Lemma A.1 follows ∥(∂pMC)−1∥2 ≤ k−1.

Hence, for any η ∥∂SMC(η)∥2 ≤ k−1N . By definition of operator norm,

the operator norm of ∥∂Sp∥ is bounded above by the same constant.

Similarly,

∥∂εp∥2 = ∥−(∂pMC)−1∂εMC∥2 ≤ k−1NK

and now define Kp = max{k−1NK, k−1N}.

B.3 Proof of Lemma 2.1

Consider the excess supply function, neglecting all g that are produced or

used by firm i. We obtain a function:

MCi
g : (p, ε) 7→ MCg(p, ε)∀g /∈ Ni

With a reasoning totally analogous, this is a function that can be inverted,

expressing p−i as a function of pi (including labor). Moreover, this function

is homogeneous of degree 1 in prices.
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Now, for g ∈ N , the residual schedule is simply:

Sr
g (pi, ε) := MCg(p−i(pi),pi, ε)− Sg(pi, εi)

Homogeneity follows immediately. Hence, we normalize the wage to 1.

Define M̂C
i
the function such that M̂C

i
= MCg(p−i(pi),pi, ε)−Sg(pi, εi).

Notice that by definition of the excess supply function this is actually inde-

pendent of S. Now, we can compute the derivative of the partially solved

prices:

∂pi
p−i = −(∂ ˆMC−ip−i

)−1∂M̂Cpi

and so define:

∂pi
Sr = ∂pi

Sr = ∂M̂Cipi
− ∂M̂Cip−i

(∂M̂Cp−i
)−1∂M̂Cpi

that is the Schur complement of ∂ ˆMC−ip−i
in the jacobian ∂M̂C, appro-

priately reordered to have all g ∈ N in the upper left corner, and all others

in the rest:

∂M̂C =

(
∂M̂Cipi

∂M̂Cip−i

∂ ˆMC−ipi
∂ ˆMC−ip−i

)−1

=

(
(∂M̂Cipi

− ∂M̂Cip−i
(∂ ˆMC−ip−i

)−1∂M̂Cpi
)−1 B

C D

)

Hence we conclude that if all schedules have positive definite derivatives

then ∂pi
Sr is positive definite beacause principal submatrices of positive

definite matrices are still positive definite.

B.4 Proof of Lemma A.3

Fix S. Since the stochastic parameters are
∑

i di ≥ M , the map p is

not invertible. We can consider a restriction such that it is. Namely,

impose that the uncertain parameters relative to the same good are the

same across firms: εgi = εgj for all i, j and g. Let us denote the stochastic

parameters remained independent as ε̃, and their domain as Ẽ ⊂ RM .

This is a compact set, because it is a closed subset of a compact set. This

way, the uncertain parameters behave formally exactly like prices, and with
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analogous reasoning as in Proposition 1 we obtain that ∂ε̃MC is positive

definite. Moreover, repeating the reasoning in the proof of Proposition 2.1,

we obtain that if we consider constants the parameters relative to one firm

i, this is equivalent to calculate the matrix ∂ε/iMC = ∂ε̃MC − ∂ε̃Ŝi, and

this is still positive definite, exactly as ∂pMC− ˆ∂pS i is still positive definite.

In particular, it is invertible.

Hence, in the interior of Ẽ :

∂ε/ip = −(∂pMC)−1∂ε/iMC

is invertible, and so the map p : Ẽ → RM is locally invertible: for any

ε̃ ∈ ˚̃E there is an open Uε̃ such that p |Uε̃
is invertible. In particular, p(Uε̃)

is open, and so p(˚̃E) = ∪ε̃Uε̃ is open too; hence p(Ẽ) is the closure of an

open set.

B.5 Proof of Lemma A.4

Consider the perturbation in the direction of η: Si + hηi. Write pi(h) for

pi(Si + hηi, εi). Define the functions:

N(h) = −E
[

p′
i(h)

Pi(pi(h))
Sr
i (pi(h), εi)

]
(6)

M(h) = Φi(Sr
i (pi(h), εi)) (7)

The Gateaux derivatives in direction ηi are N ′(0), M ′(0). Note that

we can exchange derivatives and integrals since all the functions involved

have bounded derivative (and the price space is supposed compact), hence

dominated (because a probability space has finite measure) (see Billingsley

(2008), Theorem 16.8). We have first to compute the derivative of pi(Si +

hηi, ε) with respect to h, that by the chain rule is:

∂hpi(Si,−ℓ + hηi,−ℓ, ε) = ∂Si,−ℓ
piηi,−ℓ

where ∂Si,−ℓ
pi is the Gateaux derivative of the prices as functions of the
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schedules chosen, that can be computed via the implicit function theorem:18

[∂Si,−ℓ
pi(ηi)] = −([∂pi

Si,−ℓ] + [∂pi
Sr
i,−ℓ])

−1ηi,−ℓ

where I use the fact that the both the submatrices are positive semidef-

inite, and the residual demand is positive definite. Remember that Si,−ℓ

denotes the components of the schedule Si excluding the labor demand,

and similarly for Sr
i,−ℓ and ηi,−ℓ. Hence, now:

N ′(h) = − ∂

∂h
E
[

p′
i(h)

Pi(pi(h))
Sr
i (pi(h), εi)

]
= −E

[
∂hpi(h)

′Sr
i + p′

i∂pSr∂hpi(h)

Pi

− p′
i(h)(Sr

i (pi(h), εi))

P 2
i

∇pi
P ′
i∂hpi(h)

]
= E

[(
(Sr

i,−ℓ)
′ + p′

i∂pSr
i,−ℓ +

(Si(pi(h), εi))

Pi

∇pi,−1Pi,−ℓ

)
×

1

Pi

([∂pi
Si,−ℓ] + [∂pi

Sr
i,−ℓ])

−1ηi,−ℓ

]
for any direction ηi. Moreover:

M ′(h) = Φi(Sr
i (pi(h), εi))

= ∇Φi∂pSr
i ∂hpi(h)

= −∇Φi∂pSr
i,−ℓ([∂pi

Si,−ℓ] + [∂pi
Sr
i,−ℓ])

−1ηi,−ℓ

for any direction ηi.

B.6 Details of Example 2

Write Di =
∑

j∈iDij for the aggregate demand function from firms in

layer i, and similarly Si =
∑

j∈i Sij for the supply. Hence MC = (S1 −
D2, . . . , Sn −Dc). Now consider the matrix:

diag(p)−1∂pMCdiag(p) =

18Alternatively, we can compute directly ∂hpi using the implicit function theorem,
the procedures are identical.
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 ∂p1S1 − ∂p1D2, −∂p2D2
p2
p1
, 0 . . . 0

−∂p1S2
p1
p2

∂p2S2 − ∂p2D3, −∂p3D3
p3
p2
, . . . 0

0 . . . 0 ∂pn−1Sn
pn−1

pn
∂pnSn − ∂pnDc


By homogeneity,

∂pi−1Di

∂piDi
= − pi

pi−1
, and

∂pi−1Si

∂piSi
= − pi

pi−1
, so on each row of

this matrix the sum of the off-diagonal terms is equal to ∂piSi + ∂piDi+1,

which is exactly equal to the diagonal element, but for row 1 and 2, in which

one of the addenda is missing and so the diagonal element is larger. Hence

the matrix is weakly chained diagonally dominant, so positive definite. So,

by similarity, also ∂pMC is positive definite, and since it has negative off-

diagonal elements, it is an M -matrix and ∂pMC−1 has all positive entries.

Now ∂εMC = (0, . . . ,−∂εDc), and so ∂εpi > 0 for all i. Moreover if ε → ∞
Dc → ∞ and ε → ∞ Dc → 0, so the whole price space is reached.

Finally, ∂εpi ̸= 0 implies ∂piε ̸= 0, that is there exist gi such that

ε = gi(pi), hence the measurability assumption is satisfied.
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