CSEF

Centre for Studies in Economics and Finance

WORKING PAPER NO. 766

Persuading an Inattentive and Privately

Informed Receiver

Pietro Dall’ Ara

October 2025

University of Naples Federico II University of Salerno Bocconi University, Milan

CSEF - Centre for Studies in Economics and Finance
DEPARTMENT OF ECONOMICS AND STATISTICS — UNIVERSITY OF NAPLES FEDERICO II
80126 NAPLES - ITALY
Tel. and fax +39 081 675372 - e-mail: csef@unina.it
ISSN: 2240-9696


mailto:csef@xcom.it




CSEF

Centre for Studies in Economics and Finance

WORKING PAPER NO. 766

Persuading an Inattentive and Privately

Informed Receiver

Pietro Dall’Ara*

Abstract

This paper studies the persuasion of a receiver who accesses information only if she exerts
costly attention effort. A sender designs an experiment to persuade the receiver to take a
specific action. The experiment affects the receiver’s attention effort, that is, the probability that
she updates her beliefs. As an implication, persuasion has two margins: extensive (effort) and
intensive (action). The receiver’s utility exhibits a supermodularity property in information and
effort. By leveraging this property, we establish a general equivalence between experiments
and persuasion mechanisms a la Kolotilin et al. (2017). In applications, the sender’s optimal
strategy involves censoring favorable states.
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1 Introduction

In the “information age,” consumers evaluate whether information sources are
worth their attention because learning takes effort and time (Simon, 1996; Floridi,
2014). The persuasion literature studies how a sender, such as an advertiser or
media outlet, provides information to persuade a receiver to take a specific action
(Kamenica, 2019). When attention is costly, the sender faces a dual problem:
the receiver can be persuaded only if she pays attention. This paper studies a
persuasion model in which the sender’s information affects the attention effort of
a receiver who privately knows the costs and benefits of information.

The intensive margin of persuasion refers to the intensity of the sender’s in-
fluence on the receiver’s action, given that she is attentive, whereas the extensive
margin refers to whether the receiver pays attention to the information. The
study of the extensive margin is important to understand how consumers allocate
attention to product advertisements and news content. This allocation of atten-
tion ultimately determines the success of marketing campaigns and the spread of
information across heterogeneous audiences.

To study the extensive and intensive margins of persuasion, we introduce the
receiver’s attention decision into a persuasion game between two players: Sender
(he) and Receiver (she). In the first stage of the game, Sender designs a signal,
a random variable that is jointly distributed with an unknown state. Receiver
chooses her attention effort knowing after observing the signal’s distribution but
before its realization. By exerting costly effort, Receiver increases the probability
of observing the signal’s realization. In the last stage of the game, Receiver takes
a binary action: 1 or 0. The players’ interests conflict because Receiver chooses
action 1 only if she expects the state to exceed her outside option, whereas Sender
wants her to choose 1 regardless of the state. The Receiver’s outside option and
effort cost constitute her private type. The outside option reflects the benefits
of information, because it is unlikely that a piece of information is useful if the
available outside option is extremely beneficial. Similar games are applied to study
the persuasion of voters, electoral manipulation, and credit-rating agencies (Alonso
and Camara, 2016; Gehlbach and Simpser, 2015; Bizzotto and Vigier, 2021).

Sender considers that increasing the correlation between the state and the
signal affects both the Receiver’s attention effort e (the extensive margin) and
her action after observing the signal (the intensive margin). Specifically, Receiver
updates her beliefs with probability e and does not update with the remaining
probability. The effort represents the acquisition of information, and its associated
costs can be monetary, such as subscription fees, or cognitive, such as mental

exertion. This attention model is less general than those with flexible information



acquisition (Caplin et al., 2022; Pomatto et al., 2023), as Receiver only chooses
the probability with which she uniformly observes every signal realization. This
parsimonious model includes asymmetric information between Sender and Receiver
and a general functional form of the cost of effort.!

In the model, the Receiver’s utility is supermodular in information and effort
(Corollary 1). In particular, the return from effort increases in a type-specific
informativeness order, which is a completion of Blackwell’s order. This property
is a complementarity between information and attention effort. Complementarity
is a feature of information acquisition that is likely to arise from sources like news
outlets and advertisements. For instance, this feature emerges when voters’ willing-
ness to subscribe to a newspaper increases as the newspaper dedicates more space
to election coverage, and when TV audiences pay more attention to increasingly
informative advertisements. (There is empirical evidence that product awareness
increases in the informative content of ads, e.g., Honka et al., 2017; Tsai and Honka,
2021.) This paper analyzes the extent of persuasion in such settings.

We establish the equivalence between persuasion mechanisms and signals (Theo-
rem 1). A persuasion mechanism is a menu of signals, one for every Receiver’s report
of her type. Under a persuasion mechanism, Receiver makes a report and chooses
her effort. Specifically, Receiver chooses the probability with which she observes
the signal that corresponds to her report. For every persuasion mechanism, there is
a signal that induces the same action and effort choices of all Receiver’s types. The
key step in the proof is to construct a signal that “allocates” to each type the same
type-specific informativeness as the mechanism. This step establishes the equiva-
lence with respect to effort choices. The constructed signal also replicates Receiver’s
optimal action, by simple convex analysis given the representation of signals as con-
vex functions (Gentzkow and Kamenica, 2016). So, the equivalence in Kolotilin et al.
(2017) arises in the particular case of costless effort. As a result, an information
provider need not offer a fine collection of targeted experiments and the analysis of
the extensive margin can be performed with single signals without loss of generality.

We characterize the optimal signal in applications and demonstrate that it
censors high states. An upper censorship is a signal that reveals low states and pools
high states, as shown in Figure la. Upper censorships are optimal if the Receiver’s
outside option follows a single-peaked distribution (Theorem 3). In the costless-
attention case, the result follows directly from the shape of the noise in the Receiver’s
action given her posterior belief. The noise — perceived by Sender — is exogenous

and due to asymmetric information. Our result accounts for the endogenous

ITypical applications of flexible information acquisition rely on functional-form assumptions
and define cost functions over belief distributions, which this model avoids. The information
cost is “experimental” (Denti et al., 2022) because Receiver effectively chooses mixtures of full
information and null information about the Sender’s signal.
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(a) An upper censorship is a signal (b) A bi-upper censorship is a signal
that reveals the state 6 if 8 is below a that reveals the state 6 if 8 is below a
threshold @ and sends a single message, lower threshold 67, sends a message mj
m, if the state is above 6. if the state is between 6; and an upper

threshold 6#;, and sends a different
message m, if the state is above 6.

Figure 1: An upper censorship (a) and a bi-upper censorship (b), for a state 6
with support [0, 1].

randomness due to the Receiver’s choice of effort. Moreover, any equilibrium upper
censorship provides less information if effort is costless than if effort comes at a small
cost (Proposition 1). We also consider an extension inspired by models of media
capture a la Gehlbach and Sonin (2014). In this model, Sender values Receiver’s
effort directly — i.e., not only because effort ultimately affects the Receiver’s action.
“Bi-upper censorships” are optimal signals (Proposition 2, Figure 1b). In the proof,
the additional censorship region allows Sender to separately control the extensive
and intensive margins. Overall, these results suggest that attention constraints

can push interested information providers to supply more information.

Related literature Existing work considers persuasion without Receiver’s infor-
mation acquisition.? The optimality properties of upper censorships are known, and
the equivalence between persuasion mechanisms and signals is shown by Kolotilin
et al. (2017). We generalize these results to the case of Receiver’s costly effort
and privately known effort cost. This paper’s model is not nested in the fruitful
“mean-measurable” paradigm because, in equilibrium, effort is a function of the
entire posterior-mean distribution, not of a single posterior mean; this observation
is implied by Lemma 2 and the Sender’s maximand in Lemma B.4. So, the tech-
niques of Kolotilin (2018), Dworczak and Martini (2019), and Kleiner et al. (2021)
cannot be applied off the shelf.

The persuasion of an inattentive Receiver is studied without private informa-
tion. In Wei (2021), Receiver’s attention cost is posterior separable. As a result
of costly attention and symmetric information, the optimal signal is binary, and,
in equilibrium, Receiver pays full attention. In the main model of Bloedel and
Segal (2021), Receiver’s attention cost is proportional to the entropy reduction

in her belief and upper censorships are optimal signals. In a separate model, the

2Inter alia: Rayo and Segal (2010); Kamenica and Gentzkow (2011); Kolotilin (2018); Dworczak
and Martini (2019). For upper censorships, see also: Kleiner et al. (2021); Kolotilin et al. (2022);
Arieli et al. (2023); Feng et al. (2024); for persuasion mechanisms, see also Guo and Shmaya (2019).



authors study the same effort-cost structure as in this paper. The connection of
this paper with these alternative approches, including the models in Lipnowski
et al. (2020, 2022), is discussed in Section 6. Certain dynamic models of persuasion
include costly Receiver’s attention (Liao, 2021; Jain and Whitmeyer, 2022; Au
and Whitmeyer, 2023; Che et al., 2023), although the focus of these binary-state
models is on the intertemporal flow of information.?

Other work studies Receiver’s information acquisition with different Sender’s
incentives or Receiver’s sources than in this paper. The literature on attention man-
agement considers Receiver’s attention given a benevolent Sender, who maximizes
Receiver’s material payoff ignoring attention cost (Lipnowski et al., 2020, 2022).
The literature on persuasion with acquisition of “outside information” studies the
acquisition of extra information beyond what Sender provides (Brocas and Carrillo,
2007; Felgenhauer, 2019; Bizzotto et al., 2020; Matyskova and Montes, 2023). The
focus is on how payoffs and information change as outside information becomes
cheaper. The belief of a psychological Receiver arises from an optimization problem,
which typically occurs after the signal is realized (Lipnowski and Mathevet, 2018;
Galperti, 2019; Beauchéne et al., 2019; de Clippel and Zhang, 2022; Augias and
Barreto, 2024) — and not before, as in this paper.

Outline Section 2 describes the model and Section 3 analyzes the Receiver’s
equilibrium attention and action. Section 4 describes the equivalence between
persuasion mechanisms and signals, and Section 5 considers upper censorships and
applications. Section 6 discusses alternative approaches of incorporating inattention

in information design. Omitted proofs are in Appendix B.

2 Model

2.1 Players, actions, and payoffs

Two players, Sender (he) and Receiver (she), play the following persuasion game. Re-
ceiver chooses action a € {0, 1} and effort e € [0, 1], knowing her type (¢, A) € [0, 1]2.
The material payoff of action a, given state 6 € [0,1], is a(d — ¢), and the cost of
effort e is Ak(e), for a continuous function k: [0,1] — R and given the Receiver’s
type (¢, A). The cutoff type c represents the opportunity cost of taking the risky

action, 1, and the attention type X scales the effort cost. The Receiver’s utility is

3Related research includes the dynamic models in Knoepfle (2020) and Hébert and Zhong
(2024), and the search models in Branco et al. (2016) and Board and Lu (2018).



with
probability  Receiver

Sender Nature Receiver Receiver
€ observes
chooses =—— draws =— chooses ==r==rsssrrssses > sienal — chooses
signal type (c, \) , effort e gna. action a
realization
with ;
probability i
l—e %
Receiver
chooses
action a

Figure 2: The timeline of the game.

her material payoff net of effort cost and is given by
Ur(0,a,e,c,\) :=a(0 —c) — \k(e).

Sender chooses a signal about the state, a measurable 7: [0,1] — AM, in which
AM is the set of Borel probability distributions over the rich message space M.*
The Sender’s utility is given by Ug(a) := a. The results in Section 4 do not depend
on the Sender’s utility, and in Section 5 we consider a linear function of a and e

as Sender’s utility.

2.2 Information and timing

Information The state 0 is distributed according to an atomless distribution
Fy € D, the prior belief, with mean x, letting D be the set of distributions over
0, 1] identified by their distribution functions. The Receiver’s type is independent
of # and admits a marginal distribution of the attention type A\, G € D, and a
conditional distribution of the cutoff ¢ given A, G(-|\) € D.

Timing First, Sender chooses a signal, without knowing either the state or the
Receiver’s type (¢, ). Second, Receiver chooses effort e, knowing her type (¢, A)
and the signal. Third, Nature draws the state 6 according to Fj, and the signal
realization from (). Afterwards, with probability e, Receiver observes the signal
realization, she updates her belief about the state using Bayes’ rule and chooses an
action given her posterior belief; with probability 1 — e, Receiver does not observe
the signal realization and chooses an action given the prior belief. The equilibrium

notion is Perfect Bayesian Equilibrium (Appendix A.2).

4For this game, letting M = [0, 1] is sufficient (Appendix A.2); the representation of signals
as convex functions used in the rest of the paper is in Section 2.3.
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(a) The set Z is the set of convex functions
that lie between Ig,, corresponding to a fully
informative signal, and I3, corresponding
to an uninformative signal, so that I takes

x0 1
posterior mean

(b) Information policy I is more informative
than information policy J in the Blackwell
sense iff: I(x) > J(x) for all z € R;. Infor-
mation policies K and I are not comparable.

values in the shaded region.

Figure 3: Panel (a) illustrates the set of information policies, panel (b) illustrates
the Blackwell’s order of information policies; the prior Fj is a uniform distribution
for these figures and the following ones.

2.3 Information policies

Without loss, signals can be represented by the distributions of the posterior belief’s
mean induced on a Bayesian player who observes the signal realization.® Given
the presence of Receiver’s effort, it pays off to represent signals by the integrals
of such distributions, called “information policies”.

Define the information policy of F € D as the function Ir: R, — R, such that

Ip: x»—>/ F(y) dy,
0

the set of feasible distributions F := {F € D | Ip(1) = Ig (1), Ir(zx) <
I, (x) for all x € R, }, and the set of information policies Z := {/: R, — R, |
I is convex, I+(x) < I(z) < I (z) for all z € R, }, in which F is the distribution
putting full mass at the prior mean. Figure 3 illustrates the set Z and Blackwell’s
order on Z. We identify signals with information policies by the results of Gentzkow
and Kamenica (2016) and Kolotilin (2018), stated in the Appendix as Lemma A.1.

Hence, Sender chooses I € Z in the first stage of the game and the Receiver’s
posterior mean is drawn from the distribution I’ with probability corresponding

to her effort, and is equal to xg with the remaining probability (Figure 2).

®Signals can be represented by the their posterior-mean distributions in persuasion games
that (i) are “mean-measurable” (as this model) and (ii) have Receiver paying full attention
(unlike this model.) Appendix C.1 shows that the same equivalence holds for this model.



Definition 1. An equilibrium is a tuple (I*, e(+), ), in which I* € 7 is the Sender’s
information policy, e(c, A, I) € [0, 1] is the Receiver’s effort given her type (¢, A)
and information policy I, and a(c, A\, z) € [0, 1] is the probability that Receiver
chooses action 1 given type (¢, \) and posterior mean z, in a Perfect Bayesian
Equilibrium (Appendix A.2).

Notation Welet I'(x) and 01(x) denote the right derivative and subdifferential of
I € T at x € R, respectively. The function ¢g: R? — R exhibits strictly increasing
differences if t — g(s',t) — g(s,t) is increasing for all s’, s € R with s < 5.

3 Persuasion

3.1 Receiver’s action and effort

This section studies Receiver’s equilibrium choices for a given type (¢, A).
Given the posterior mean x, Receiver chooses action 1 if £ > ¢ and action 0
if x < c. Because 0 — Ug(0,a,e;c, \) is affine, the Receiver’s expected utility from

choosing the action optimally given posterior mean x is

Ur(z,e,c,\) := max Ug(z,a,e,c, ).
ac{0,1}

To characterize the equilibrium effort, we define the marginal benefit of effort given
information policy I as the difference in expected utility with and without the
0] Ur(z,e,c,\) —Ug(xo, e,c, \)dI'(x). The marginal

benefit of effort given I is also referred to as the value of information in the literature.

information contained in [: f[

The net informativeness of information policy I is the difference between I and the
uninformative-signal information policy, I (Figure 4a). The following result shows
that the marginal benefit of effort is given by the net informativeness evaluated at

¢, using the operator A: I — I — I to express the net informativeness succintly.

Lemma 1 (Net informativeness). Given information policy I and effort e, the

marginal benefit of effort is equal to the net informativeness evaluated at c, that is,
/ Ur(z,e,c,\)dI'(x) — Ug(zo,e,c,\) = Al(c).
[0,1]

The net informativeness Al is single peaked, with a peak at the prior mean
Zg, by construction, as in Figure 3b. Intuitively, extreme-cutoff types benefit the
least from observing the signal realization because they are the most certain about
the optimal action when left at the prior belief.

The following result characterizes Receiver’s equilibrium choices.
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(a) The net informativeness of I at cutoff ¢, (b) The marginal benefit of effort equals the
AlI(c), is obtained by subtracting the value of marginal cost for cutoff types ¢ and ¢, given
the uninformative-signal information policy attention type A (Lemma 1). Receiver chooses
at ¢, Ir(c), to I(c). The function ¢+ Al(c) effort 1if ¢ € (¢,¢), and does not exert effort if
is single peaked, with peak at the prior mean ¢ € [0,1]\ [¢,¢].

Zo-

Figure 4: Panel (a) illustrates the construction of the net informativeness of
information policy I, panel (b) illustrates the subset of cutoff types that exert
positive effort, given I and linear k. The information policy [ is an “upper
censorship” in both panels, defined in Section 5.

Lemma 2 (Receiver’s rationality). If (I*,e(-), ) is an equilibrium, then, for every
information policy I, it holds that:

1. 1— f[o,u ale, \,z)dl'(x) € 01(c);

2. e(c, A\, I) € Argmax, ¢y eAl(c) — Ak(e).

Proof. Part 1. follows from the definition of information policies and the equilib-
rium properties of «, part 2. follows from Lemma 1 and the equilibrium properties
of e. QED

The key implication of Lemma 2 is part 2., which identifies the net informa-
tiveness of I at the Receiver’s cutoff as a sufficient statistic for her effort decision.
As an implication, the two dimensions of Receiver’s type, ¢ and A, represent her
private information about, respectively, the benefit and cost of attention. Part 1.

restates the equilibrium conditions that the Receiver’s action satisfies.

3.2 Interval structure of the extensive margin

This section studies the Receiver’s choice of effort.
The Receiver’s value of information policy I, given type (¢, \) and effort e, is
Vi(e,Al(c)) :=eAI(c) — Mk(e).5 By Lemma 2, part 2., the Receiver’s equilibrium

6Receiver’s expected utility equals Vy(e,AI(c)) plus a constant, because we have
Wa(e,Al(c)) = f[O,l] Ur(x,e,c,\)dI'(z) + x9 — ¢ + Ix(c).

10



effort maximizes the value of the Sender’s information policy, given type (c, \).
The value of I exhibits strictly increasing differences in net informativeness and

effort by Lemma 2.

Corollary 1 (Supermodularity). The Receiver’s value of information policy I,
Vi(e, Al(c)), exhibits strictly increasing differences in net informativeness Al(c)
and effort e.

As an implication, a more informative Sender’s information policy, in the Black-
well sense, makes Receiver better off. In particular, we note that I is Blackwell more
informative than J iff: I(z) > J(z) for all z € R,. So, if I is more informative
than J, I allocates more net informativeness to every type than J. Finally, by the
increasing-differences property and the envelope theorem (Lemma C.11), Receiver
is better off facing I than J.” The following result characterizes the set of types

that exert positive effort.

Lemma 3 (Interval structure). Let (I*,e(-),a) be an equilibrium and define the
function ey: ¢~ e(c, A\, I) for information policy I and attention type A. The set
ey ' ((0,1]) is an interval if type (w0, \) chooses positive effort, i.e., ex(Al(xg)) > 0,

and 1s empty otherwise.

Proof. Let (I*,e(-), &) be an equilibrium, and let’s fix A € [0,1] and T € Z. We
start with three preliminary observations. First, e(c, A, I') equals e* o AI(c) for some
selection e from AJ(c) = Argmax,cj ) Va(e, AJ(c)), via Lemma 2. Second, every
selection from AJ(c) — Argmax,cpq; Va(e, AJ(c)) is nondecreasing, because V)
satisfies strictly increasing differences, via Corollary 1 and known results (Topkis,
1978, Theorem 6.3). From these observations, it follows that e* o AI is nondecreas-
ing on [0, zp] and nonincreasing on [xg, 1] because Al is nondecreasing on [0, x|
and AT is nonincreasing on [z, 1].

If e*(AI(xg)) = 0, then every cutoff ¢ has e*(Al(c)) = 0, by the above obser-
vations. Let’s suppose that e*(Al(xzg)) > 0. We define ¢, (AI) = sup{c € [0, z(] :
e*oAl(c) =0}, if {c € [0,20] : e* 0 Al(c) =0} # 0, and ¢, (AI) = 0 otherwise. We
define ¢\(AI) = inf{c € [zg,1] : e*0 Al(c) = 0}, if {c € [z, 1] : e* 0 AI(c) = 0} # 0,
and ¢)(AI) = 1 otherwise. First, we note that e* o AI(c) > 0 only if: ¢ € [¢,¢];
second, ¢ € (¢, ¢) only if: e* o AI(c) > 0. Thus, for all A we have that: either no
type (¢, \) chooses positive effort or e;'((0,1]) is an interval. The result follows
from the fact that Al(zg) > Al(c) for all ¢ € [0, 1]. QED

For intuition, let’s assume linear effort cost, i.e., k(e) = e, capturing a market

price or fixed cost of information. Receiver compares the marginal cost and marginal

"This observation also arises as an implication of Blackwell’s theorem; Corollary 1 is a
stronger result that we use for the results in Section 4.

11



benefit of effort. As shown in Figure 4b, exerting effort 1 is optimal only if Al(c) >
A, and no effort is optimal only if A7(c) < A. Moreover, the net informativeness of [
at a cutoff is single peaked as a function of the cutoff (Figure 3). As an implication,
the set of cutoff types that exert positive effort is an interval. (The effort of the
indifferent type is not relevant in equilibrium for atomless cutoff distributions, by
Lemma B.4.) The proof of Lemma 3 generalizes the first part of the argument.
Specifically, the Receiver’s effort is nondecreasing in net informativeness at her

cutoff type by supermodularity of V) through comparative statics a la Topkis (1978).

4 Persuasion mechanisms

This section studies the equivalence between information policies and persuasion

mechanisms.

Definition 2. A persuasion mechanism I, is a list of information policies: I, =
(I.)rer, with R equal to the support of the Receiver’s type. A persuasion mechanism

I, is incentive compatible (1C) if

max Vj(e, Al (c)) > max Vi(e, Al (c)),

e€l0,1] e€l0,1]
for every type (¢, \) and report r.

Our focus on IC mechanisms references to an auxiliary screening game. First,
Sender publicly commits to a mechanism that selects an information policy for
every type report. Then, Receiver reports a type r € R, knowing her true type
(¢, \). The rest of the game proceeds as in Section 2.2: Receiver chooses effort e,
then she observes the realization of a signal corresponding to information policy I,
with probability e, and lastly chooses an action. We focus on equilibria in which
Receiver truthfully reports the type.

We consider a persuasion mechanism I, to be equivalent by information policy
J if all types chooses the same action and effort under truthful reporting given
I, as in some equilibrium of the subgame that starts with the Sender’s choice of

information policy J (Section 2.2).

Definition 3. An IC persuasion mechanism I, is equivalent to information policy

J if, for every type (c, A):

1. Argmax V) (e, Al (c)) C Argmax Vi (e, AJ(c)),

e€[0,1] e€[0,1]
2. 0l n(c) € 0J(c) if (0,1] N Argmax Vy(e, Al \(c)) # 0.
e€[0,1]

12
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Figure 5: The upper envelope J of the information policies in the persuasion
mechanism I, = (I, L, K).

If effort is costless, Definition 3 is the same as in Kolotilin et al. (2017, p. 1954).
The novelty is item 1., which requires type (¢, ) to choose the same effort under I,
as under the signal that is equivalent to I,. Item 2. in Definition 3 does not deal with
types who exert effort 0 under truthful reporting given I,. The reason is that the
equilibrium action given the prior belief does not depend on Sender’s information.®

Every IC persuasion mechanism is equivalent to a signal.

Theorem 1. Fvery IC persuasion mechanism is equivalent to an information

policy.

This result guarantees that the characterization of the extensive margin of
persuasion in Section 3 holds in more general environments, including applications
in which multiple information structures are available to decision-makers.

We sketch the intuition and proof of Theorem 1, which leverage Corollary 1. The
proof verifies that supermodularity is key by establishing the result for more general
Receiver’s payoff functions (Appendix B.2). Let’s claim that the IC mechanism
I, is equivalent to its upper envelope J (Figure 5), defined as J: z — sup,cp I, ().
Fix a Receiver’s type (¢, A) that exerts positive effort. A report r is active at x if
I.(x) > I.(x) for all " € R. First, we observe that an active report at ¢ maximizes
Receiver’s expected utility. By Lemma 2, the report r affects Receiver’s utility
only through the net informativeness Al.(c). By increasing differences; an active
report at ¢ makes type (¢, \) weakly better off than any other report (Corollary
1, via the envelope theorem for supermodular programming, Lemma C.11.) Hence,

an active report at ¢ maximizes Receiver’s expected utility at the reporting stage.

8Formally, the reason is that the equivalence of the action decision holds as a consequence
of item 1. “for this type.” Specifically, Argmax,c(o 1] Va(e, Al x)(c)) = {0} implies that 0 €
Argmax,c(o 1) Va(e, AJ(c)) by item 1., and the optimal action at the prior belief given I, is the
same as given J, possibly via equilibrium selection.
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Towards the equivalence with respect to effort, we strengthen the observation:
Receiver is strictly worse off with an inactive report than with an active report.
This conclusion uses both the fact that Corollary 1 establishes strictly increasing dif-
ferences and type (¢, A)’s positive effort (Lemma C.11). To build on this conclusion,
we order information policies according to the type-specific relation <., defined
by I <. J iff AI(¢) < AJ(c). The linear order <, is a completion of Blackwell’s
order and ranks the entries in mechanism I, according to Receiver’s expected
utility. By the IC property of the mechanism I,, the policy [, maximizes <. on
I, only if AL (c) = Al..” Hence, J(c) = I(.\ (c) > I,(c), for every report r. An
application of Lemma 2 completes the argument for the equivalence with respect
to effort. In particular, the net informativeness, AJ(c), is the only component of
the information policy I ) that affects the effort decision in the IC mechanism
I,. The proof uses a continuity argument to cover the case of zero effort.

The equivalence with respect to action decisions follows from standard ob-
servations in convex analysis, due to our results. In particular, we have that
OI,(x) C 9J(x) if report r is active at .

5 Optimality properties of upper censorships

This section discusses the properties of the following class of information policies.

Definition 4. The 0 upper censorship, for state 6 € [0, 1], is the unique information
policy Iz € Z such that

Ir, (), z € [0,0]

Ij(x) = _ o _
max{Ip,(0) + Fy(0)(x — 0), [x(x)}, z= € (6,00).

The case of a single-peaked marginal distribution of the cutoff type is relevant for
applications (Romanyuk and Smolin, 2019; Kolotilin et al., 2022; Gitmez and Molavi,
2023; Shishkin, 2024; Augias and Barreto, 2024; Sun et al., 2024). The class of single-

peaked distributions includes the standard uniform and the [0, 1]-truncated normal.

Assumption 1. For all A, the conditional distribution of the cutoff type given
attention type A admits a density function g(-|A) that is absolutely continuous.
Moreover, there exists p € [0, 1] such that: for all A, g(:|\) is nondecreasing on

[0, p] and nonincreasing on [p, 1].

Under this assumption, we restrict attention to type distributions that are

single-peaked “in cutoff type” and with the same peak for all attention types. The

9Blackwell’s theorem does not suffice for this conclusion, which uses (i) Corollary 1, (ii) the
envelope theorem (Appendix, Lemma C.11), and (iii) completeness of <.
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continuity restriction rules out the symmetric-information benchmark, which is
treated separately in the Appendix.
We first establish that an equilibrium exists and that the Sender’s equilibrium

expected utility is unique.

Theorem 2. Under Assumption 1, there exists an equilibrium and the Sender’s

expected utility is the same in every equilibrium.

In the Appendix (Lemma B.4), we establish that continuity of the cutoff dis-
tribution ensures that Sender is indifferent among all Receiver’s best responses.
Lipnowski et al. (2024) show that uniqueness obtains in a general model, which
does not nest ours.”

The following result shows that an optimal signal that is an upper censorship

exists.

Theorem 3. Under Assumption 1, there exists an equilibrium in which the Sender’s

information policy is an upper censorship.

Given Theorem 1, Theorem 3 shows that the extensive margin of a complicated
optimal persuasion mechanism can be studied via an upper censorship. Moreover,
Theorem 3 reduces the Sender’s optimization to the uni-dimensional problem of
identifying an optimal threshold state.

In the case of costless attention and Sender-optimal equilibria, the argument
for Theorem 3 rests on the shape of the exogenous noise in Receiver’s action given
a posterior belief, from the Sender’s viewpoint. The Sender’s expected utility at
posterior mean x is H(z), letting H denote the distribution of the cutoff type. By
single-peakedness, H is “S shaped.” So, Sender is risk loving conditionally on low
posterior means, i.e., x < p, and he is risk averse around high posterior means.
In particular, a mean-preserving spread around a low posterior mean increases
his expected utility. Second-order dominance is related to the informativeness of
Sender’s signal because: F € F is a mean-preserving spread of F e Fiff Iy is
more Blackwell informative than I,. Moreover, the upper censorship /7 induces
either full information conditionally on the state being lower than the threshold 6,
or no information except that 6 > #. Hence, intuitively, upper censorships induce
posterior-mean distributions that align with the Sender’s interests.

We now adjust the intuition for the case of endogenous effort, i.e., in which the
relevant information policy is x +— el (z) 4+ (1 — e)Ix(x) if the Receiver’s effort is e.

We claim that effort is affected by the signal’s informativeness in a way that aligns

0Corollary 1 in Lipnowski et al. (2024) is similar to our observation, even if our proof leverages
the convexity of (i) information policies and (ii) Receiver’s interim utility a — max.c(o,1] Va(e, a).
The latter result obtains from the envelope theorem for supermodular optimization, Lemma C.11.
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with the Sender’s interests. Suppose that Sender increases the net informativeness
of posterior mean z: AIl(z). This change induces cutoff type z to pay extra
attention, via the envelope theorem for supermodular optimization (lemmata 2 and
C.11.) If cutoff type x increases her effort, she gathers more information, because
the policy z — el (z)+ (1 —e)Ix(z) increases in the Blackwell’s order as e increases.
Thus, Sender spreads out the Receiver’s posterior-mean distribution around x by
increasing the net informativeness. This argument, however, is “local.” Specifically,
the net informativeness Al(z) increases only via switching to an information
policy satisfying the convexity constraint in Z. The proof deals with this point by
constructing an upper censorship that improves upon I, for arbitrary 1.

The following result shows that Sender provides more information as Receiver’s
attention cost increases, for small attention costs. We say that [ € Z is optimal
if there exists an equilibrium in which Sender chooses I. We say that strict single-
peakedness holds if: Assumption 1 holds and, for all A, g(:|\) is increasing on [0, p]

and decreasing on [p, 1].

Proposition 1. Let strict single-peakedness hold, Fy admit a density, k be linear,
and the attention type put full mass at . Let Iy, be an optimal upper censorship
if X\=c¢, and I,, be an optimal upper censorship if A =0, with n € (0,1). It holds
that 0. > n for all sufficiently small € > 0.

The same qualitative result holds in Wei (2021, Proposition 7). Let’s describe
the intuition in the symmetric-information benchmark, for ¢ > zy. Sender solves the
maximization of the Receiver’s action subject to the constraint that she exerts effort
1. Let’s claim that the “participation constraint” binds (Lemma B.5). Let’s suppose
this were not the case. Sender increases the probability of a posterior mean x with
x > ¢ as much as possible. Specifically, he induces the mean x = ¢ with the highest
probability that satisfies Bayes’ rule (Kamenica and Gentzkow, 2011). Hence,
Receiver faces two contingencies: either she is indifferent between the actions or she
finds it optimal to go for the the riskless action. So, information brings no value,
which is a contradiction: the constraint binds. As an implication, Sender provides
more information as A increases. Proposition 1 shows that the insight generalizes to
private information about the cutoff, for small A. In general, a change in the censor-
ship state 6. affects the extensive margin because of the Receiver’s private informa-
tion. We note, however, that only the extensive margin’s upper bound (¢ in Figure
4b) is affected by small changes in 6. around 7, because a vial upper censorship is op-
timal if A\ = 0. Specifically, the net informativeness of I is 0 at a cutoff type weakly
greater than the conditional expectation of § given > @ (Figure 4). So, be increas-
ing the threshold state, Sender is countervailing the decrease in the extensive mar-

gin’s upper bound that occurs as A increases. This argument leads to Proposition 1.
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In applications to media capture, Sender cares directly about Receiver’s atten-
tion (Gehlbach and Sonin, 2014). In this case, Sender is a dictator and owns a
state’s media, so he collects advertisement revenues. The next result shows that an
extension of the class of upper censorships contains an optimal information policy

in these applications.'! A bi-upper censorship is an information policy I such that

]FO(IE), x € [0,01},
[($) - ]F0(91> -+ Fo(@l)(l' — 91), RS (91,%1],
Ix(xo) — m(zy — ), x € (x1, 2],

I (22)~ (15, (01)+Fo(01)(21—01)] and 0 <0, <z <29 < 1
To2—x1 — — — —

Bi-upper censorships are defined by two threshold states, as in Figure 1.

for m =

Proposition 2. Let Assumption 1 hold with p > xo, k be linear, the attention type
put full mass at A\, and the Sender’s utility be given by Ug(0,a,e,c,\) = a+ ve
for v > 0. For every equilibrium (I,e(-),a), there exists a bi-upper censorship with

a weakly greater Sender’s expected utility than I, given e(-) and «.

The intuition clarifies that the additional threshold state is constructed to
increase the marginal benefit of effort of certain types in case I induces fewer cutoft
types than what the optimal extensive margin. The proof constructs a bi-upper
censorship that improves upon an arbitrary information policy in terms of expected
Receiver’s action and extensive margin. First, we construct an upper censorship I
that improves upon a given [ for v = 0, thanks to the same intuition as for Theorem
3. Second, we take into account the endogeneity of the extensive margin: we modify
I5 in a way that replicates the extensive margin of I by censoring extreme states on
either sides of the state space. At this stage, we have a candidate “improving” policy
that is not a bi-upper censorship. As a last step, we leverage single-peakedness to
note that increasing the lower bound of the extensive margin is beneficial for Sender,
as in the discussion following Proposition 1. The lower bound is maximized by
choosing to fully reveal low states, so the argument returns a bi-upper censorship.

The Sender’s preferences are introduced by Gehlbach and Sonin (2014), who
assume binary state and Sender’s signal. The case of v = 0 is studied by Kolotilin
et al. (2022), who show that upper censorships are optimal signals for costless
attention. The requirement that the cutoft’s peak satisfies p > xy represents
sufficient ex-ante disagreement between Sender and Receiver, as in Shishkin (2024)

and for symmetric cutoff densities.

HEquilibrium existence is not established for this extension. The difficulty lies in establishing
continuity of the extensive margin — i.e., continuity of F + ¢, (Alr) and F + ¢)\(AlIr), defined
in the proof of Lemma 3 — when F is endowed with the L'-norm topology.
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6 Discussion and interpretation

The term Ak(e) in the Receiver’s utility represents her attention cost. In this sec-
tion, we think of e as representing an attention effort and consider the effort-choice
stage of the game for nondecreasing k. An increase in attention effort results in
a more informed Receiver in the Blackwell’s sense (Figure 3) and higher costs.
The general functional form of effort cost allows the model to capture a range of
attention- and non-attention-related phenomena. Examples of costly attention
include cognitive difficulties and memory limits. In contrast, the opportunity cost

of being attentive is relevant when evaluating media subscription or exposure.

Alternative models of costly attention and information design In Lip-
nowski et al. (2020) (LMW), the attention cost is proportional to the reduction in
the uncertainty about the state. Receiver incurs a cost for what she learns about
the state. LMW is a model of delegated learning (Bloedel and Segal, 2021), which
fits applications with: a separate entity from Receiver researching about 6 and
Receiver learning through that research. As an illustration, LMW captures the
problem of a firm (Receiver) that processes data provided by an information in-
termediary (Sender). Wei (2021) applies this paradigm to study state-independent
Sender’s preferences.

In the main model of Bloedel and Segal (2021) (BS), the attention cost is
proportional to the entropy reduction of the Receiver’s belief about the Sender’s
message.'?> Receiver incurs a cost for what she learns about the Sender’s talk. BS
is a model of learning from communication, fitting applications in which commu-
nication is costly to process. As an illustration, BS captures the problem of a
social-media user (Receiver) who learns from the advertisement of an influencer
(Sender) at a cost that involves deciphering words and situations portrayed in
the ad. The optimal Sender’s signal is an upper censorship in BS, although for
a different reason than in this model. In particular, Sender perceives Receiver’s
action as random, given a signal realization, because of her attention strategy; in
this model, instead, the randomness arises due to both the Receiver’s effort and
asymmetric information (as discussed in Section 5.)

In this model, the attention cost is independent of the information provided
by Sender, and fully flexible in this class. Receiver incurs a cost for exposure to

the Sender’s communication. We model learning via exposure, fitting applications

12\We describe the main model of BS with state-independent Sender’s preferences and
entropy-based cost, even though the paper includes other preferences and costs. Bloedel and
Segal also consider our symmetric-information benchmark, as an alternative to their model.
Under symmetric information, Sender chooses a binary signal without loss of optimality by
standard arguments. Bloedel and Segal study the resulting optimization in their “Lemma 3.”
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in which the Receiver’s strategy has a cost irrespectively of Sender’s information
provision. Paying full attention to a communication that turns out uninformative
is allowed to have any cost here, whereas this strategy is costless in BS and LMW.
As an illustration, this model captures the problem of a platform user (Receiver)
who devotes a share of her mental energy to learning about current affairs from
her news feed engineered by the platform (Sender). If the feed contains only
friends’ updates and product ads, searching for news is both costly and fruitless.
This “independence” feature, between costs and information, is well suited for
applications in which cognitive costs are thought of as less granularly than in
BS-LMW and possibly aggregated with costs of different nature.

Our model builds upon BS and LMW by constraining the Receiver’s strategies
to mixtures of full and null information about the Sender’s message. In the rational-
inattention tradition (Sims, 2003), the Receiver of BS-LMW flexibly allocates her
cognitive resources because she can learn in any conceivable way. However, allowing
such flexibility comes with tracking multiple signal structures and using extensions
of entropy-based costs. By insisting on a single attention variable, effort, our
framework abstracts from these complexities while preserving the fundamental
tradeoff of rational inattention. By extending the “constrained BS-LMW” we
analyze additional questions related to screening and the shape of the extensive
margin, which complement the current literature. Moreover, departures from
flexibility reflect real-life psychological and technological constraints. For instance,
a consumer may only choose the time and mental energy to spend in front of the
TV, and a voter may only choose how many articles to sample randomly and learn
fully from in a newspaper. Lastly, rational inattention is not the only explanation
for costly effort, which could refer to the opportunity cost of learning or a transfer
paid to “infomediaries” — including Sender, as in Proposition 2 — in applications.

In Matyskova and Montes (2023), Receiver pays a cost to access additional
information beyond what the Sender provides. In Dworczak and Pavan (2022),
Receiver may have access to extra information sources than just the Sender’s one.
These models target a fundamentally different strategic context than ours and fit
applications in which the Sender’s communication is costless to understand. The
Sender’s tradeoff involves (i) inducing favorable actions and (ii) preventing the
access to external information that may hinder (i). In the model with binary state
and action of Matyskova and Montes, Sender provides more information as the
Receiver’s cost increases, similarly as in Proposition 2. However, the channel is dif-
ferent: in Matyskova and Montes (2023), Sender provides more information so as to

disincentivize (extra) attention, whereas here Sender does it to incentivize attention.
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7 Conclusion

This paper proposes a model of inattention within a persuasion game that un-
derscores the complementarity between information and attention effort. This
complementarity leads to the equivalence of persuasion mechanisms and experi-
ments. The sender’s optimization problem is solved by censoring favorable states.
The same logic applies in contexts in which attention is directly valued, such as
in media capture.

In general, complementarity may hold only “locally”, across audiences and
information structures, for instance due to information overload and psychological
constraints. A study of the extensive margin of persuasion that incorporates these

distinctions offers an open avenue for future research.
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Appendix

A Equilibrium
A.1 The equivalence between signals and information policies

Lemma A.1. The following hold:
1. If F e F, thenIp € Z;
2. If I € Z, then I' € F, extending I to take value 0 at every x < 0.

Proof. See Gentzkow and Kamenica (2016) and Kolotilin (2018). QED

A.2 Equilibrium definition

We define a Perfect Bayesian Equilibrium in which Sender directly chooses an
experiment F' € F. From Section C.1, this approach is without loss. From Lemma
A1, the equilibrium notion is essentially the same as in the text (Section 2.2). Let
T denote the support of Receiver’s type. Given F € F and effort € € [0, 1], we
define e ® F = ¢F + (1 — ¢)F, and note that e ® F € F. An equilibrium is a
tuple (F,e,a), in which F € F, e(-, F): T — [0,1] is measurable for all F' € F,
a(,z): T — [0,1] is measurable for all z € [0,1], and «a(c, A,-): [0,1] — [0, 1] is
measurable for all (¢, \) € T, such that:
1. « satisfies a Opt:

a(c,\,z) > 0 only if 1 € Argmaxa(f — ¢)
ac{0,1}

for all z € [0,1], (¢, \) € T

2. e satisfies e Opt:

ele,\, F) € Argmax/ max Ug(z,a,e, ¢, \) d(e(c,\, F) ® F)(z)
[0

e€[0,1] 1] a€{0,1}

for all (c,\) €T, F € F;

3. F is rational for Sender given (o, e), that is: F' maximizes

W(,ea): F— /[0’1} /[071] /[071] a(z,c,\)d(e(c, N\, F) ® F)(z) dG(c|\) dG(N)

on F.

The set of maximizers in e Opt is nonempty because the function e — Ug(z, a, e, ¢, A)

is continuous for all z, a, ¢, \. Lemmata B.2 and B.4 establish that the maximization
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in (3.) is well-defined, given («, €) satisfying items (1.) and (2.).

B Proofs

We endow F with the L' norm, which metrizes weak convergence (Machina, 1982,
Lemma 1). We endow Z with the pointwise order, denoted by <. We define the

functions

0
Wit Fos | Va(AIe(e) 2 (c]N) de
[0,1] Oc
and W: F f[O,l] Wi(F)dG(A\). The function g: R? — R exhibits increasing
differences if t — g(s',t) — g(s,t) is nondecreasing for all s’, s € R with s < 5.
Proofs that are mainly technical or follow from known arguments are relegated

to Appendix C.

Definition B.1. The experiment F'is W maximal if F' maximizes W on F. The
experiment F € Fis an equilibrium experiment if there exists an equilibrium
(F,e,o) with F(z) = F(z) for all z € R. The Receiver’s value of F € F is
VA(AIp(c)) := maxeeio,1) Vale, Alp(c)). There are multiple Sender’s payoffs if there
exist equilibria (F, e, o) and (F, ¢, &) such that W(F, e, a) # W(ﬁ’,é, Q).

Remark B.1. Let’s fix an equilibrium (F,e(-), a). We have e(c, A\, I) = e} o Al(c)
for some selection e from AJ(c) = Argmax, (o5 Va(e, AJ(c)) by e Opt. We define
¢\ (AI) = sup{c € [0,z : €5 0o Al(c) = 0}, if {c € [0, 2] : €5 0o AI(c) = 0} # 0,
and ¢, (AI) = 0 otherwise. We define ¢,(AI) = inf{c € [z, 1] : e} 0o Al(c) = 0},
if {c € [zg,1] : €} 0 AI(c) =0} # 0, and ¢\(AI) = 1 otherwise.

B.1 Proof of Lemma 1

Proof. Let’s fix Receiver’s type (¢, \) and I € Z. By definition of Ug, letting a(c, x)
be any probability measure over {0, 1} such that a(c, ) ( Argmax,c o,y a(z—c)) = 1
for all z € [0, 1], we have

/ Ur(z,e,c,\)dIl'(z) + Mk(e) = / r—cdl'(x)
[0,1] [e1]

— (1= ale,({1H)(I'(c) = I'(c7)) (c —c),
= /[ l]x—cd['(yc).
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Moreover,

/ Ur(z,e,c,\)dI'(z) + Mk(e) = (1 —¢) — / I'(x)dz,
[0,1]

[e,1]

=z —c+ I(c).

in which the first equality is due to Riemann—Stieltjes integration by parts (Machina,
1982, Lemma 2) and the second to absolute continuity of I. It follows that

/ Ug(z,e,c,\)dI'(x) —/ Ur(z,e,c,\)dF(z) = Al(c).
[0,1]

[0,1]

QED

B.2 Proof of Theorem 1

Theorem 1 is implied by the result proved in this section as Proposition B.1. For
this section, we fix a function f: [0, 1] x [0, 1] — R? that satisfies strictly increasing
differences, and such that: f(-,a) is continuous for all a € [0, 1], f(e, ) is nonde-
creasing for all e € [0, 1], the derivative with respect to the variable a, g—i(e, Y,
exists, is nonnegative and bounded for all e € [0, 1], and f(e,-) is increasing for all
e € (0,1]. We maintain the definitions of the main text except that the following
definitions replace the corresponding ones in the main text: The value of I € T,
given type (¢, A\) and effort e, is Vy(e, Al(c)) := f(e,Al(c)) — K(e, ), and the
cost of effort e € [0,1] is K(e, A) for a continuous function K(-,A). We use the
shorthand t = (¢, \¢) and we define the set of optimal efforts

E\,(Al(c)) := Argmax V), (e, Al(¢;)),

e€(0,1]
and V), (AI(c¢;)) := maxeepo,1) Vi, (e, Al(c)), for I € Z. A persuasion mechanism I,

is incentive compatible (IC) if:

t € Argmax V), (Al.(c)), for all types t € T.
reR

Definition B.2. An IC persuasion mechanism I, is equivalent to an experiment

if there exists information policy I such that, for all ¢t € T*:

L. E)\t<A]t(Ct)) - EAt(AI(Ct»?
2. O1,(c) C OI(ey) if (0,1] N B, (AL(c)) £ 0.
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Proposition B.1. Every IC persuasion mechanism is equivalent to an experiment.

Proof. Let’s fix an IC persuasion mechanism I,. The proof has three steps: (1) we
define an information policy J, (2) we show that J induces the same effort and

(3) action as I,.

(1) Definition of information policy J Let’s define the function 7: [0,1] —
0,1] as

I(c) :==supI,(c), c€]0,1].
reR
I(c) is well defined because 0 < I,.(c) < Ig(c) < 1 —xp, ¢ € [0,1]. I is the
pointwise supremum of a family of convex functions, so I is convex. We have
Ix(c) < I(c) < Ig(c), c € ]0,1], because I, € Z,r € R. We extend I on (1, 00),
so that the resulting extended function J: R, — R, is an information policy, by
defining J(c) = Ig,(c), ¢ € (1,00), and J(c) = I(c), ¢ € [0,1]. Thus, J € Z.

(2) Effort distribution There are two cases.
1. By, (AL(c)) N (0,1] # 0.
2. EAt(A]t(Ct)) = {0}

First, we consider case (1.). By the envelope theorem (Lemma C.11), we have:

W) = Vi (Ate) = [ " Y @) da,

NACH e

for a selection e of E),. Because f exhibits strictly increasing differences, e(a) >

e(ALi(c)) if @ > Ali(¢;). By the assumption that %(d, ) > 0 on (0,1] for all @
Wy (a) — Vi (AL(cy)) > 0, for all a > AlLi(c).
Thus, in case (1.), IC implies that

sup AIT(Ct) = A[t(ct).

reR
Let’s consider case (2.), and, towards a contradiction, let’s suppose 0 ¢ Ey,(AJ(¢;)).
By Berge’s Maximum Theorem (Aliprantis and Border, 2006, Theorem 17.31), E,,
is upper hemi-continuous and has compact values. Hence, by the sequential charac-

terization of upper hemi-continuity of compact-valued correspondences (Aliprantis
and Border, 2006, Theorem 17.16), there exists @ € (Ali(¢;), AJ(¢;)) and f > 0 such
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that f € By, (a) (else, define a,, := TAL(c;) + (1 — £)AJ(ct), n €N, to get: a, —

n

AJ(c;) as n — oo, By, (a,) = {0}, n € N, and 0 ¢ E),(AJ(c;)), which contradicts
upper hemi-continuity of £),.) By the assumption that %(d, ) > 0on (0,1] for all a

Vi (AJ(e)) = Vi (@) > 0.
The above inequality and the envelope theorem imply that
W (AJ(¢;)) — Vi (ALi(cy)) > 0.
Hence, IC does not hold, which is a contradiction. Thus, 0 € E),(AJ(ct)).

(3) Action distribution Let’s suppose that d € 0I(cs) and d ¢ 0J(c,) for
some type s € T. Because I, and J are information policies, they have the same
extension on (—o00,0) and, so, ¢; > 0. We have that d is a subgradient of I at cs,
and d is not subgradient of J at ¢ ; from the fact that J(cs) = I(cs) — established

above —, there exists x € R such that
I(z) > Ii(cs) + d(x —¢5) > J(2),

which implies I (z) > J(z). The last inequality contradicts the definition of
J. QED

B.3 Proof of Theorem 2

In this section, we maintain the assumption that: the conditional density of the

cutoff type given the attention type A, g(:|A), is absolutely continuous for all A.
Lemma B.2. The function W is continuous on F.

Lemma B.3. There exists a measurable selection from (c, A, x) — Argmax (g 1y a(6—
c), for all e € [0,1], and there exists a measurable selection from (c,\)
Argmax,cpq) eAlr(c) — Ak(e), for all F € F.

Proof. The nontrivial part is the second one. The maximand is a real-valued
function that is continuous in ¢, A, and e. So, the Measurable Maximum Theorem

holds (Aliprantis and Border, 2006, Theorem 18.19). QED

The next result establishes that the Sender’s expected utility given I € Z the
same in every equilibrium adopting a slightly stronger uniqueness condition than

in Definition B.1. The comparison holds for two reasons. First, Definition B.1
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compares Sender’s expected utility given the equiltbrium information policy across
equilibria, whereas the proof compares Sender’s expected utility given an arbitrary
and fixed information policy across equilibria. Second, the proof looks at the

conditional expected utility given .

Lemma B.4. The experiment F is an equilibrium experiment if, and only if: F

is W mazimal. Moreover, there are not multiple Sender’s payoffs.

Proof. We first show that: F'is W maximal if, and only if: F is rational for Sender
given (a,e), a satisfies a Opt, and e satisfies e Opt. It suffices to show that the

function
Dy(-,a,e): F / / alz,c,\)d(e(c, \, F) © F)(z) dG(c|\) — Wy(F)
[0,1] J[0,1]

is constant for all A\. First, let’s express the Sender’s equilibrium—conditional-

expected utility given \ as

Wy (F) = /m . /[O BTt ) — e, 0) AP ) AG(EN)

+/ a(zg, ¢, A) dG(c|N),
[0,1]

for a selection e} from a — Argmax .o Va(e, a), via Remark B.1. By Lemma 2,
there exists a selection d} from the subdifferential of Al on [0, 2] and a selection
d3 from the subdifferential of Alr on (z¢, 1] such that:

_(WA(F) — Wi(F)) = /

[071’0]

ex(Alr(0)d;(c) dG(c|) + /( ; eA(Alr(c)df(c) dG(c|A)
Zo,

By the envelope theorem (Lemma C.11), e} is a selection from the subdifferential

of the convex and nondecreasing function V). By construction, Alp is: (i) convex

on [0, zo], and (ii) convex on (zg, 1]. Hence: by the rules of subdifferential calculus

(Fact C.1), there exists a selection d from the subdifferential of V) o Alr such

that: d(c) = ex(Alr(c))d}(c), for all ¢ € [0, x¢], and d(c) = e5(Alr(c))d?(c), for all

¢ € (o, 1]. Hence:

_(WA(F) — WA(F)) = /

[0,20]

d(c)dG(c|N) + / d(c)dG(c|N)

(x071]

:/ d(c)dG(c!)\)Jr/ d(c) dG(c|N),
[0,20]

[:E(),l]

in which the second equality uses absolute continuity of G/(:|A). By Fact C.1, the
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composition V) o Alr is a convex function on [0, 2], so V) o Al is the integral
of any selection from the its subdifferential on [0, ] (Rockafellar, 1970, Corollary
24.2.1.) Similarly, V), o Al is a convex function on [z¢, 1]. By absolute continuity

of g(-|\), we integrate by parts to obtain

—(W(F) = WA(F)) = Va0 Alp(1)g(1]A) = Vi 0 ALr(0)g(0|A)

- / Vyo A[F(C)@(d/\) de.
[0,1] oc
The fact that Alp(1) = Alp(0) = 0 implies

SO = W) = 001~ gOMA0) — [ Vio Ar(e) 3 el de

Hence,
WA(F) = W(F) + Wx(F) = (g(1|]A) = g(0|A))VA(0).
So,

Dy(F00) = [ aan,e ) AG(C) ~ (6(11) ~ g0 AO)
As a result, Dy(-, «,e) is constant on F. Hence, F is W maximal if, and only if:
F' is rational for Sender, given (o, e), « satisfies a Opt, and e satisfies e Opt.

From the above equivalence, it follows that: if (F ,e,a) is an equilibrium, then
F'is W maximal. For the other direction, let F' be W maximal. By Lemma B.3,
there exist e and o that satisfy the equilibrium measurability conditions, a Opt,
and e Opt, given F'. Because I’ is W maximal, F' is rational for Sender, given
(a, €), by the above equivalence. Thus, (F, e, a) is an equilibrium.

As an implication, there are not multiple Sender’s payoffs. QED
Proposition B.2. There exists an equilibrium.

Proof. The set F is compact in the topology induced by the L' norm (Kleiner et al.,
2021, Proposition 1.) The result follows from Lemma B.4 via upper semi continuity

of the Sender’s maximand in the definition of W' maximality (Lemma B.2). QED

Proof of Theorem 2

Proof. Theorem 2 is implied by Lemma B.4 and Proposition B.2, given that

Assumption 1 contains the continuity requirements assumed in this section. QED

27



B.4 Proof of Theorem 3

Theorem 3 is a consequence of Lemma B.4 and the following property of upper
censorship. A version of the property is in the working paper Lipnowski et al.,
2021, Appendix A.5; Kolotilin et al. (2017, Theorem 2) and Romanyuk and Smolin
(2019, Theorem 2) establish similar results.

Lemma B.5. Let I € T and ¢ € [0,1]. There exists 6 € [0,(] such that:
(1.) Iy(¢) = 1(C);
(2.) I(¢™) < I'(¢7), and

Iy(x) — I(z) > 0, for all x € |0,(],
Iy(x) — I(x) <0, for all x € [¢,0).

Proof of Theorem 3

Proof. By Lemma B.4, if F* € F maximizes
dg dg
W:F— VA(AI:(c))==(c|A)de+ VA(AIx(e))==(c|A) dedG(N),
[0.1] J10.p) dc [p,1] Oc

then there exists an equilibrium in which F™ is the Sender’s experiment. Sup-
pose two experiments F, H € F such that Ip(x) > Iy(z) for all z € [0,p] and
Ip(xz) < Ig(x) for all z € [p,1]. Because (i) V) is nondecreasing, (ii) %(-L\) is
nonnegative on [0, p] and nonnpositive on [p, 1], it follows that W (F) > W (H).
Hence, the result follows from Lemma B.5. In particular, by Proposition B.2, there
exists an equilibrium experiment F , and by Lemma B.5 there exists F* such that

F* weakly improves upon F in terms of W and Ip- is an upper censorship. QED

B.5 Proof of Proposition 1

The proof has four steps. First, we establish a single-crossing property of the
derivative of the Sender’s payoff given I, with respect to 6, in three claims. Second,
we establish a monotonicity property of the Sender’s payoff given I, with respect
to @ given certain conditions, in two claims. The third step verifies that the op-
timality properties and the hypotheses in the statement of the Proposition imply

the aforementioned conditions. The final step completes the argument.

Proof. Let’s fix an equilibrium (F| e, o).
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(1.) Let strict single-peakedness hold. We claim that the function (6,¢) —

f[e <]<C — 0)Zg(c|A\) de crosses zero at most once and from above, that is:

/ (c—e)aa gl de<0 — [ (=) LgeN) de <0,
[6.€] ¢

[0,¢" aC

for all # < 0 and ( < ', with ¢ < (/, 0 < (. If p < @', the result holds. If
f[@ C]<C — 9)%g(c|/\) de <0, then p < (. We have

0 0 0

[ =gt [ =0 Totelaes [ -0 Loeae
0

c— cl A\

+AJ )< glel)de.

Let f[e qle— 0)Zg(c|A)de < 0. Then:

0 0 0
[, = Ogaenaes [ emozgemdes— [ e-ogaea

which implies, by ¢’ < p:

0 0
Am@—%%@ww< é&u—wcﬁm

From the above inequality and p < ¢, we have:

0 0 0
(¢ —8)=—g(c|N) dc—i—/ (c—8)=g(c|N) dc+/ (c—8)=g(c|]\)dec <0,
/[ ) de pc] de (¢ de
so the claim follows.

(2.) Let strict single-peakedness hold. f[9 E](c —0)£g(c|\) de is increasing in A
if p <€, for ¢ :=¢\(Alp) and ¢ € (zg,1). The claim holds because A\ — ¢,(Aly)

is decreasing under our hypotheses.

(3.) Let Assumption 1 hold. We claim that ¢\(Alp) > 0, p < €\(Alp), and
ex(Ay) € (w0,1), if: I) maximizes W on F and Fy, F do not maximize W on F.
If 2\(Aly) < 0, then Fy maximizes W on F. If ¢\(Aly) < p, then Fy maximizes

W on F. The rest of the claim follows from similar arguments.

(4.) Let x5:= fieipoe) , for threshold state 6 € [0,1]. By Lemma B.4, we com-

pute the derivative of the Sender’s expected utility, given information policy I,
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with respect to 6, which is:
d 9 . _

iw(lé) = 50 (0) Jimacinatpy e an (@ — 5 @N) dz,  if 6 <E(Al)
90 0, if 0> c\(Al).

As claimed above, under our hypotheses, 0. < ¢\(Als.). Moreover, by strict

single-peakedness, there exists a unique optimal upper censorship I, if A = 0, with
€ (0,1) (Kolotilin et al., 2022, Lemma 7.) Let’s complete the proof.

First, claim 1. implies that 6 — W (I3) crosses zero only once and from above:

at f.. By claims 2. and 3., 6. > 7, for € > 0. QED

B.6 Proof of Proposition 2

The proof of Proposition 2 has two steps. The first and main step has the same
structure as that of Theorem 3. In particular, Lemma B.6 generalizes the con-
struction of Lemma B.5 to construct: an information policy I* that preserves the
extensive margin and improves upon an arbitrary information policy I, for large
p. I* induces two censorship regions, separated by a full-revelation region. The
second step of the proof: (1) adds a second censorship region at the top to include
the general case of p > x¢, and (2) verifies that eliminating the bottom censorship
region improves upon Sender’s payoff. For the rest of this section, we omit reference

to A and we fix an equilibrium (Fe(-), a).

Lemma B.6. Let I € T and define ¢* := ¢(AI). There exists an information
policy I* that satisfies the following properties:
1. (FEAS) I* is feasible, i.e., I* € T;
2. (EM) I* produces the same extensive margin as I, i.e., ¢(AI*) = ¢* and
(AT = o(AT);
3. (IMPR) AI*(xz) > 0, for all x € [¢(AI),c*];
4. (CENS) There exist x¢,0p, 0, Ty such that 0 <z, < 0, <60, <z, <1 and

e

Ip(z) ,x €10, 2]
I, (00) + Fo(0)(x — 6y) ,x € (20,0
I*(z) = 4 I, (2) ,x € (6p,0,]
Ip,(0) + Fo(O)(x — 0,) 2 € (O, )]
Ix(x) , T € (T, 00).

\

Proof. We use the notation: ¢(Al) =:¢, ¢(Al) =: ¢. In the first step, we prove the
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result for the case in which there is a feasible information policy that is a straight
line between the points p := (¢, I(c)) and p := (¢, 1(¢)). In the second step we
analyze the other case.

First Step. Let’s define the line i such that x — I(c) + A*(x — ¢), with slope
A= % We claim that i*(z) := max{i(x), I&(x)} satisfies all properties. *
is FEAS by hypothesis. i* is EXT because i(c) = I(c) and i(c) = I(¢). i* is IMPR
because [ is convex and i* is EXT. ¢* is CENS with 6, = 0,, = x,,, because: (i)
EXT of i* and convexity of I imply that ¢* is affine on [, €], (ii) \* € [0, 1] and EXT
imply, with I € Z, that there are intersection points z, Zo, with 7; < ¢ < ¢ < 7,
such that: *(z) = I(x) if z € [0, 7] U [Z2, 1].

Second Step. In this case, i* is not FEAS. Because i* satisfies FEAS at z if z < ¢
and if x > ¢, there exists a point z* € (¢, ¢) such that: i(z*) > I (2*). Let’s define:

L:={Xe[I'(¢),1] : I(c) + Nz — ¢) < Ir,(x) for all x € [¢,00)},
M:={\e€[0,I'(¢)] : I(T) + Ma —¢) < I, (z) for all z € [0,¢c]},

o

—

¢ :=max L, m := min M, and the lines

ye:x— I(c) + Lz — ¢,
Ym :x = 1(C) + m(x — ).

As part of the rest of the proof, we establish some lemmata.

Lemma B.7. It holds that ¢ and m are well-defined.

Proof. L is nonempty because I’(c) € L, which follows from: (i) Ig,(x) > I(x) for
all z and (ii) I'(c) € 0I(c). M is nonempty because I'(¢) € M, which follows from:
(i) Ig,(z) > I(x) for all  and (ii) I'(¢) € 0I(¢). L, M are closed because I, is
continuous. L, M are bounded. QED

Lemma B.8. There exists a unique pair of numbers (0y,60,,) € [c, 1] x [0, ¢] such
that: yi(60e) = Ig,(0e) and ym(0m) = Ik, (0).

Proof. Suppose there does not exists such 6,. There exists a sufficiently small £ > 0
such that: (i) £ +¢e € L and (ii) I(¢c) + (£ +¢)(x — ¢) < I, (x) for all z € [c,0);
we note that 6, = 1 contradicts £ € L because I}, (r) < 1if 2 < 1. Uniquenss of
6, follows from convexity of Ig,.

Suppose there does not exists such 6,,. There exists a sufficiently small € > 0
such that: (i) £ —e € M and (ii) I(¢) + (m — ¢€)(x — ¢) < Ig,(z) for all = € [0,¢);
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we note that 6, = 0 contradicts I # I%. Uniquenss of 6, follows from convexity
of I Fo- QED

Lemma B.9. It holds that 6, < 0,,.

Proof. Let’s first prove that: it suffices to show that ¢ < m. Suppose ¢ < m, then,
from ¢ € 01, (0y), m € OIg,(0,,), and Ig, being strictly convex, we have: 0y < 6,,,.

Next, we show that ¢ < A*. Suppose that: ¢ > \*. Then: I(z) + {(x —¢) >
I(c) + M (z — ¢) for all x > ¢. Therefore, because ¢ > 0, we get:

Ig, (") > I(c) + \*(z" — ¢).

We reach a contradiction with the definition of z*, so: £ < \*.
Let’s prove that m > A*. Suppose m < A*. Then: I(z) + m(z —¢) >
I(¢) + X*(z —¢) for all x < €. Therefore, because m > 0, we get:

Ig (") > I(c) + N'(=* — o).

We reach a contradiction with the definition of z*, so: m > A*. Therefore, we have
m > A\* > (, which implies 6,, > 0,. QED

We define a candidate I* and verify that I* has the desired properties.

max{/x(z),I(c) +l(x —c)} ,x€[0,0
I*(z) = { I, (2) T € [0g, 0]
max{/x(z), () + m(z —2¢)} ,x € [0y, o0)

Let’s first verify that I* is well-defined. We know that ¢ € 0l (6;) and m €
0Ip, (0). Because I(c) + (0 —¢) < Ig,(0) and I(c) > I, (c), max{Ig, (x),I(c) +
Uz —c)} = Ig(z) if © < x0; and max{Ig,(x),I(c) + l(x —c)} = I(c) + {(x — ¢)
if © > x; for some xy € [0,0,]. In a similar way, we can show that there exists
a Ty € [0, 1] such that: max{lg (x),[(¢) + m(x —¢)} = I (z) if © > x9, and
max{Ig (z), [(¢) + m(z —¢)} = 1(¢c) + m(z —¢) if © < xs.
1. CENS follows from the definition of I* and the conclusion of the above
paragraph.
2. IMPR on [¢, 6,] and [0,,,¢] follows from convexity of I, and on [0y, 0,,,] follows
from FEAS of I in that region.
3. EM follows by construction of I*.
4. FEAS is established as in the last step of the proof of Lemma B.5.
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QED

Proof of Proposition 2

Proof. Let’s define information policy J by: letting J equal I*, constructed as
in Lemma B.6 by replacing ¢* with p, for = € [0,29,], defining the point z¢,
in which I* intercepts the line j: z +— I(¢) + I'(¢)(x — ¢); and letting J equal

(0]
m)

x +— max{Ix(x),j(z)} on [z3,,00).

It suffices to show that: if the resulting information policy J induces a censor-
ship region at the bottom, then there is an improvement over J that is a bi-upper
censorship. Suppose that I* is affine on [z, 0] and I* equals Iz on [0, x|, for
0 < x; < 0, (for notation, see Lemma B.6.) By construction, I*(6,) = I, (0). Let’s

define information policy K by

]FO("L‘) 70 <z< Qﬂa

K(z) =
J(z) x>0,

We have K > J, so K induces a weakly lower c,, than J. Hence, by v > 0, it
suffices to verify that the expected Receiver’s action is weakly higher under K than
under J. Because p > xp, the argument of Theorem 3 suffices. Specifically, by
Lemma B.4, we have

W) = W) = [ (BAKE) = TA(AI0) 2 el de

[0792} ac

> 0,

in which the inequality follows from the definition of I*, which includes p > 6,.
Hence K is a bi-upper censorship that improves upon I, for arbitrary I, in terms
of Ug. QED

C Supplementary material
C.1 Preliminaries

We claim that the Sender’s signal affects the decisions and payoffs of both Sender
and Receiver only through the distribution of the posterior mean that it induces
on a Bayesian agent who always observes the signal realization.

Type-t Receiver’s optimal action, given posterior belief y € D and t = (¢, \),

depends on the belief p only through its mean 7, := f[ 6 du(0). The Receiver’s

0,1]
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expected material payoff given belief ;1 and is given by

Jo (@ —c)du(0), T, >c,

0, itz, <ec.

o) ==

We note that v,(1) depends on the belief 1 only through x,. If the Sender’s signal
induces the Bayes-plausible distribution over posterior beliefs p (Kamenica and

Gentzkow, 2011), type-t Receiver chooses e € [0, 1] to maximize her expected utility

e /D 0a(42) dp(pe) + (1 — e)u(Fo) — M(e).

Thus, Receiver’s action, effort, and her payoff depend on the Sender’s signal only
via the distribution of the posterior mean (i.e., the distribution of z, implied by
p.) The claim follows from the Sender’s payoff function, which depends on the
signal only via the Receiver’s choice of action. The same conclusion holds under

the hypothesis of Proposition 2.

C.2 Symmetric-information benchmark

For this section, the type distribution puts full mass at ((, ), k is linear, and Fj

admits a density. The Sender’s problem is:

/ —
max (1 — I'(¢7)) Lzeziangzny (1),

because an experiment F' is an equilibrium experiment iff I solves the above maxi-
mization, due to a generalization of the argument of Gentzkow and Kamenica (2016).

If ¢ > 1, any information policy is optimal. If { < zg, [ is optimal. Let 1 > ¢ > x.

Lemma C.10. There exists 6 € [0,(] such that: Iy solves the Sender’s problem
and Aly < k, with equality if 0 > 0.

Proof. Let " :={I1 € T | I = Iy, 0 € [0,¢]}. Without loss of optimality by Lemma
B.5, we consider solutions in Z". Suppose there exists a solution I € Z", such that
I = Ip«, for some 0* € (0,1). We distinguish three cases.

(1) If AI(¢) < k, then Sender is indifferent between I and Iz, so the lemma
holds. (2) If AI(() = k, the lemma holds. (3) If AI({) > &, then, by definition
of I at y = 1((),

Ig, (67) + Fo(07)(¢ — 0) —y = 0.
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By the implicit function theorem, there exists a differentiable function ¢: (0,1) —
(0,1) such that t: y — 6* and

1
——r——, 0< (<t
#(y) = () FL (1)) C<tly),

ﬁ 1> (> t(y).

Let’s define the value of the Sender’s maximand at Iy as v: (0,1) — [0, 1] such that
v: @ —1—1y(¢"). Because I).(¢”) = Fy(0*), v is differentiable in 6 at 8*. The

derivative of v with respect to I(() is:

ok .
~a0 O oy Eaao)

if ¢ > t(I1(¢)), and —1 otherwise. It follows that we can consider without loss
solutions I € 7% that satisfy: Aly(¢) =k and I = Iy, or AI(() < k. QED

C.3 Auxiliary results

Fact C.1 (Subdifferential of convex functions). Let S C R, f: S — R be convex and
v: R — R be a nondecreasing convex function on the range of f. The following hold:
1. The function p o f is convexr on S;
2. For ally € S, letting t = f(y), we have:

{au: (a,u) € dp(t) x 0f(y)} = Op o f(y).

Proof. See Bauschke and Combettes (2011, Proposition 8.21 and Corollary 16.72.)
QED

Lemma C.11 (Envelope theorem). Let f: [0,1]> — R exhibit increasing differences

and be such that: f(-,a) is continuous for all a € [0,1], f(e,-) is nondecreasing

for all e € [0,1], the derivative with respect to the variable a, %(e, 1), exists and
is bounded for all e € [0,1]. The following hold.
1. We have Argmax, ; f(e,a) # O for all a € [0,1].
2. The function a — max.c),1 f(e,a) is nondecreasing and absolutely contin-
uous.
3. Ifaw— %(e, a) is nondecreasing for all e € [0,1], then a — max.cp1 f(e, a)
1S convex.
of

4. If f exhibits strictly increasing differences, a — 3-(e,a) is nondecreasing,

f(e,-) is increasing for all e € (0,1], Argmax,cjq f(e,a) N (0,1] # 0, and
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1>d >a>0, then

max f(e,a’) > max f(e,a).

max fle,a’) > max f(e,a)
Proof. By upper semi-continuity of f, Argmax.cp 4 f(e,a) # (), so 1. holds. Then,
by the increasing-differences property of f, there exists a nondecreasing selection
e’ a s Argmax g q) f(e,a) on [0, 1] (Topkis, 1978). By our hypotheses, we apply
the envelope theorem (Milgrom and Segal, 2002), letting V' (a) := max.cp 1 f(e, a),

to establish that V' is absolutely continuous and

of

V(a) =V(0) + ou a

(e*(a),a)da.
V' is nondecreasing because % > 0. Hence, 2. holds.

Let’s establish that V' is convex if a — %(e,a) is nondecreasing. By the
increasing-differences property of f: (i) e — %(e, a) is nondecreasing, and (ii) there
exists a nondecreasing e*: a — Argmax,c( ) f(e,a). As a result, a %(e*(a), a)
is nondecreasing. Thus, V' is convex (Rockafellar, 1970, Theorem 24.8.) Hence, 3.
holds.

Let a’ > a,for d’,a € [0,1], and ¢’ € Argmax,cj 1) f(e,a)N (0, 1]. Then: V(a')—
V(a) = f[a,a’} %(e*(d), a)da for every selection e of Argmax, .4 f(e,a) N (0,1].
We have the following chain of inequalities under the additional hypotheses stated
in part 4.:

of

: %(6/, EL) da

V(d) - V(a) 2 /

[a7a

aof .
> ZL
> /[a’a/] 0 (¢',a)da,

in which the first inequality follows from the strict increasing-differences property
of f and the definition of ¢/, the second inequality holds because a + %(e, a) is
nondecreasing (for the first inequality, in particular, we note that: (i) every selec-
tion e of Argmax,c(oq; f(e,a) N (0, 1] is nondecreasing, (ii) there exists a selection
e* of Argmax,c(y f(e,a) N (0,1] such that e*(a) = ¢'.) Item 4. holds because
f[ 9 (¢! a)da = (a’—a)%(e’,a). QED

a,a’']l da

C.4 Proof of Lemma B.2

Proof. Let’s fix A\, F' € F, and € > 0, and define p), := f[o 1]|%(C|/\)’ de. Let ¢ := p%
if py > 0, and let § be an arbitrary positive number otherwise. Let H € F be such
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that f[0’1]|H(x) — F(x)|dz < é.
We first establish the claim that: |Vy(Alg(c)) — Va(Alp(c))| < d. By definition
of V) and the envelope theorem (Lemma C.11), there exists a selection e from

¢ — Argmax,c () eAlr(c) — Ak(e) such that:

[Vi(AIg(c)) — Vi(Alr(c))| = / e(a) da.

[min{AIg(c),Alp(c)} max{Alg(c),Alr(c)}]

The codomain of e is [0, 1], so, by the above equality:
IVA(AIn(c)) = Va(Alp(c)| < [Alu(c) — Alp(c)|.
We have the following chain of inequalities,

[VA(ALu () = Va(Alp(e))] < ’ [ H(z) — F(z)dx

0,c]
< [ |H@ - F@)d
[0,c]

<9,

which establishes the claim.
We establish the continuity of the function W) on F. We have the following

chain of inequalities,

WD) - WP < [ (AT - @)l | (e ac

(0,1]

Thus, W), is continuous on F. The result follows from the following chain of

inequalities,

W (H) - W(F)| < /[ JWAH) =~ WA aG )

<e.

QED
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C.5 Proof of Lemma B.5

Proof. Let ¢ € [0,1]. Let M :={m € [0, I'(¢7)] : I({)+m(z—() < I, (z) for allz €
[0,(]}, and m := min M. We construct an information policy starting from the
line z +— I(¢) + m(x — (), via the next three claims.

(1) m is well-defined. (i) M is nonempty, because 0 < I'((~) < 1 (which follows
from I € Z), I'(¢”) € 0I(¢™) and I(z) < Ig,(x) for all x; (ii) M is closed, because
the mapping m +— I(¢) + m(x — () is a continuous function on [0, I'(¢7)]; (iii) M
is bounded because I'((7) < 1, from I € Z.

(2) There exists 0 € [0,¢] such that I, (0) = I(¢) +m(6 — (). If m = 0, then
0 = I, (0) > I(¢) > 0. Hence, taking 6§ = 0 verifies our claim. Let m > 0, and
suppose there does not exist 6 € [0, (] such that I (6) = I(¢) + m(6 — (). There
exists € > 0 such that: I(¢)+(m—e)(x—() < I, (z) forall z € [0,(] and 0 < € < E.
Moreover, for a sufficiently small ¢ > 0, we have m —e € M. Thus, we have a
contradiction with the definition of m.

(3) m € 0Ip,(0) and I(¢)+m(x—C) = I, (0)+ (x —0)Fy(0) for all x. First, we
argue that m € 01, (). By convexity of I, and definition of 6, x +— I(¢)+m(xz—)
is tangent to Iy, at 6. Thus, m is a subgradient of Iy, at 6. Now, we argue that
I(()+m(x — ) = I, (0) + (x — 0)Fy(0) for all x. m = Fy(f) because [, is differ-
entiable (by the fact that Fy(z~) = Fy(z),z € R.) The equality follows because
x— I1(¢) + m(x — ¢) is equal to Ig, at x = 6.

We define the following function.

Ig, () ,x € 0,0]
I w0  1(¢) +m(z — () ,x € (6,
max{I(¢) + m(z — (), Ix(z)} ,z € ((,00).

Now, we claim that I = Iy. It suffices to show that: (i) for some z, € [0, 1]

Ip () ,x € [0,0]
Iu(l') = ]F0(0> + (ZE — 9)F0(0) , T € (Q,ZL'U]
I (x) T € (xy,00),

and (i) I* € Z. We claim that (i) holds by means of the next three claims.
There exists x,, € [(,1] such that:



Let’s note that: (a) I(¢) > I#(¢); (b) by m € 0Ig,(0) and I, (1) = I%(1), we have
that Iw(1) > I(¢) +m(1 — (), and (c) the two functions,  — I(¢) + m(z — ¢) and
I+, are affine with slopes, respectively, m and 1, such that: m < 1.

We proceed to verify that (ii) holds, i.e. I* € Z, via the next two claims.

(1) Ix(z) < I'"(z) < Ig(x) for all x € Ry and I locally convexr at all
x ¢ {0,x,}. If x € [0,0), I" is locally convex and Ix(x) < [*(z) < Ig(z).
If 2 € (6,(), I"is affine, I(z) < I(x) < I"(x) by construction of I* and definition
of I, and I"(x) < Ig,(x) by m € 0l (x). If x € [(,00), I is locally convex (be-
cause it is the maximum of affine functions), Ix(z) < I*(x) by construction of I*,
I"(z) < Ig,(x) because: (i) m € 0Ig,(¢) and (ii) Ix(z) < Ig,(x). To verify global
convexity, it suffices to verify the next claim.

(2) I is subdifferentiable at x € {0, x,}. First, we argue that m is a subgradient
of I at 6. This follows from the fact that the slope of I" at 0 is a subgradient of
Ip, at 0, and I*(0) = Ig,(0). On [0,0], I* = Ig,, and on [#,, 00) I* is above the line
x> 1(() +m(z — (). Thus, m € 0I*(#). Second, the fact that m is a subgradient
of I* at x, follows from the definition of x,,.

We established that I*(z) = Iy(x) for all x € [0,1]. (1.) and (2.) hold by

construction. QED
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