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1 Introduction

A long-standing debate in economics is concerned with the question how stabi-
lization policy should be conducted in practice.

While optimal policies in dynamic economic models typically prescribe to
condition the policy choice on exogenous shocks and endogenous state variables,
prominent economists have argued for constant or unconditional policies (e.g.
Milton Friedman (1970)).

Most informal arguments that have been put forward against active stabiliza-
tion policy involve informational problems such as uncertainty about the precise
effects and time lags associated with particular policy actions.! The implica-
tions of such uncertainty for optimal policy has received considerable attention
in the recent literature on robust control. Yet, optimal policies have often been
found to be even more reactive than in the absence of such uncertainty?

This paper is also concerned with the implications of information problems
for optimal policy but looks at the problem from a different angle. In particular,
the paper abstracts from uncertainty about the precise effects of policy. Instead,
it considers a situation where economic efficiency requires coordination between
the policy maker’s and private sector decisions. Such coordination is required
whenever optimal private sector decisions are functions of the policy choice and
the state of the economy, as will be assumed in the paper. Informational frictions
about the policy and the state then determine agents’ ability to coordinate with
the policy maker’s choices and thereby affect welfare.

It is easy to think of examples that require the coordination of decisions.
This is so because general equilibrium models by nature postulate the consis-
tency between the policy maker’s and the private sector’s plans.® If monetary
policy, for example, affects production costs then optimal price setting decisions
of monopolistically competitive firms depend on it; similarly, if exchange rate
policy affects the relative price of foreign goods then optimal production plans
of domestic firms should depend on exchange rate policy; finally, when fiscal
policy affects the composition of aggregate demand then the optimal allocation
of labor and capital across sectors will be affected by it.

The novelty of the paper consists of endogenizing the degree of information
frictions by explicitly modeling a link between the policy rule pursued by the
policy maker and the informational frictions that exist on the side of the private
sector. The modelling of this link is based on Shannon’s (1948) theory of infor-
mation transmission which postulates that agents receive information through

I Further arguments against stabilization policy are based on credibility problems or policy-
irrelevance propositions in models with rational expectations, no nominal rigidities, and no
informational asymmetries.

2See, for example, Onatski and Stock (2000) or Rudebusch (2001).

3Note that such coordination may be necessary even if systematic policy has no real effects.



so-called communication channels. These channels may either be interpreted in
terms of physical channels, e.g. telegraph or telephone lines, or alternatively in
terms of a model of the information flow in the mind of economic agents.

Communication channels transmit information only with finite capacity and
thereby cause residual noise in agents’ information sets, which I suggest to
interpret in terms of a measurement errors of the variables of interest! The
paper shows that optimal use of the information channel by private agents
implies that their measurement error has a non-classical feature: measurement
errors are proportionate to the variance of the variables that agents wish to
observe, i.e. measurement errors of the state (policy) turn out to be a fixed
proportion of the variance of the state (policy) itself.

As a result of the link between policy and information frictions, policy not
only affects the economic state but also the degree of coordination between the
policy maker and the private sector. Policies that ignore this relationship or that
postulate that measurement errors are exogenous will then be sub-optimal?

Technically speaking the paper considers a linear-quadratic policy problem
where a benevolent policy maker chooses a control variable to influence the state
of the economy. In addition, private agents choose decision variables whose
optimal values depend on the policy and on the state of the economy. Agents
(optimally) use communication channels to obtain information about these two
variables.

The paper shows that the control problem remains to be of simple linear
quadratic form even when taking account of the costs associated with the infor-
mation frictions. In particular, it is shown that there exists a stationary equi-
librium in which the policy maker solves an alternative control problem where
a different cost-weight is associated with the use of the instrument. Given the
resulting policy, the private sector’s optimal use of the communication channels
generates coordinations costs which can be interpreted in terms of the changed
cost-weight.

This implies that information frictions of the kind introduced in this pa-
per have a simple reduced form representation, which should make the setup
attractive for economic applications.

The paper finds that informational frictions can push policy either way:
depending on parameters it may become either more or less aggressive when
compared to a benchmark policy that assumes that information frictions are
independent from policy.® In particular, I find that optimal policy is more

4 Alternatively, the noise could be interpreted as resulting from information processing
errors.

5This statement holds with proability one under generic parameterizations of the economy.

6 Alternatively, the benchmark policy can be interpreted as the policy that is optimal in
the absence of information frictions.



(less) aggressive, i.e. it reacts stronger (less strong) to past state deviations
and to current shocks, whenever observation errors about the economic state
(policy) constitute the dominant costs.

The intuition for these results are straightforward. Suppose observation
errors about the policy are less costly than errors about the state. To minimize
the costs of observation errors, the policy maker should choose a more variable
policy to stabilize the state and to reduce agents’ observation errors about the
state. Clearly, this comes at the expense of increased observation errors about
the policy choice. However, by assumption the latter costs are less important.

A similar logic leading to more attenuated policies applies when observation
errors about the policy constitute the dominant costs.

The paper also considers a non-stationary situation where the shocks that
hit the economy are heteroskedastic. This is of interest because information
frictions are then equally non-stationary because agents use ‘quite times‘ to
improve information about past 'busy times’. The paper shows that this causes
the cost-weights associated with use of the policy instrument to change over
time, which generates auto-correlated policy changes. In particular, sluggish or
overshooting optimal policy adjustment are shown to be optimal in such cases.

The use of Shannon’s (1948) model of information transmission in economic
contexts is not new to this paper. Sims (2001) has recently applied the theory in
a model without a policy maker to study consumption behavior in a permanent
income model. Earlier uses of the theory in microeconomic settings are due
Marschak (1964) and Marschak and Miyasawa (1968).

The structure of the paper is as follows. Section 2 presents the policy prob-
lem. As a benchmark, Section 3 calculates the policy that is optimal when
information frictions are independent from the policy rule. Section 4 then in-
troduces Shannon’s (1948) communication channels and derives basic results.
Optimal policy when agents use these channels to inform themselves about the
state and the policy is determined in Section 5. Finally, Section 6 presents an
extension to heteroskedastic shocks. A conclusion gives a brief outlook of work
ahead. The appendix collects most of the technical details.

2 The Policy Problem

This section constructs a linear quadratic policy problem, which describes the
following economic situation: There is a benevolent policy maker who chooses a
policy instrument i; € R to influence the state x; € R of the economy. Atomistic
private agent with quadratic preferences over x; and i; take decisions d; ; and
do+ where di; and dy; optimally depend on the state x; and the policy i,
respectively. Measurement errors prevent agents from perfectly observing x;
and i; and might cause suboptimal private sector decisions d; ; and da ;.



The model is presented generically in terms of state and control variables.
A monetary policy making example that fits into the presented framework is
given in Adam (2001).

The state z; of the economy evolves according to a linear law of motion given
by

Ty = a1Ti_1 + agiy + azdy + asda s + (1)

The parameter a; determines how past states affect the current state; as cap-
tures the influence of the policy on the current state; az and a4 determine how
the private sectors’ average decisions 31,15 and EZ,t affect the current state. I
assume ag # —ag and aq # 1. Unless otherwise indicated the shock term ¢y is
a Gaussian white noise process with

g¢ ~ N(0,02)

The private sector consists of a continuum of identical agents. FEach agent
maximizes a quadratic utility function of the form

X }Eo > B (=7 = y0i7 = 7a(di —ie)® = Ya(day — 1)) (2)
1,¢,d2,¢ et

Private agents’ utility depends on the state, the policy, and on the deviations of
their decisions from these variables. Under suitable assumptions, see appendix
8.1 for details, the objective function (2) can be seen as a quadratic approxima-
tion to a utility function of the form

U(xta it; dl,t; d2,t)

When agents take the aggregate law of motion (1) and the policy i; as given,
the solution to (2) is trivially given by

dl,t = Et [l‘t] = Tt + 61t (3)
d27t == Et [lt] - it + 61‘1 (4)

where ¢;, and §,, denote measurement or observation errors, which are mean
zero random variables with variance Jg(it) and ag(mt), respectively. The utility
of the representative private agent is then given by

Ey

[ee]
Zﬁt (—a:f — Yoi; — 71U§(it) - ’72‘7?(:61))] (5)
t=0

The last two terms in (5) indicate that agents dislike the fact that they cannot
observe z; and i; perfectly. Intuitively, noise in agents’ information about the
state and the policy stance causes them to take suboptimal decisions, which in
expectation generate a loss that is proportionate to the variance of the obser-
vation error.



Assuming that across agents observation errors about i; and z; are indepen-
dent, the law of large numbers implies d; ; = i; and da+ = x¢, which allows to
express the aggregate law of motion (1) as

Ty = braxg—1 + baty + 1y (6)
where
ay as + as 1
b, = by = ——~ =
! 1—(14’ 2 1—@4, "t 1—a4€t

The policy maker’s problem now consists of choosing a policy {i;} that maxi-
mizes the utility (5) of the representative private agent subject to (6).

3 Optimal Policy with Classical Measurement
Error

Suppose agents observe z; and i; disturbed by so-called classical measurement
errors §;, and 6, in equations (4) and (3). With measurement error being
classical the random variables 0., and ¢;, are independent from past, current,
or future values of z; and 4;. This in turn implies that the variances Ug(mt)
and ag i) In the policy objective (5) are independent of policy and, thus, can
be dropped from the maximization problem. As a result, the policy maker’s
problem (5) simplifies to

max Fy
{is

(o)
> B (=ai ~ w‘f)] (7)
t=0
subject to (6). As is well known, optimal policy 4; is then of the form
it = CoTg—1 + C1M (8)
In a stationary equilibrium maximizing (7) is identical to
max (—o2 — Y907 ) 9)
Co,C1

where 02 and ¢? are the stationary variances of z and i, respectively. This

delivers the following optimal reaction coefficients:

co = %ﬁ (—=0b7 + 70 + b3 — V/7) (10)
2 _ B2\ _
-2 0t o
with
7= (YbT + 70 + b3)* — 4y5b7 (12)



4 A Micro-Model of Information Transmission

This section presents a micro-model of information transmission based on Shan-
non’s (1948) communication theory. As will be shown, the model generates a
non-classical measurement error. In particular, the variance of the observation
errors turns out to be a fixed proportion of the variance of the variable that
agents want to observe, i.e.

O'g(y) = /\0'32/ (133,)
where 032/ denotes the variance of the variable agents want to observe, ag( W) the

variance of the observation error, and A € [0, 1] is a constant which depends on
the technology available to agents.

4.1 Quantifying Uncertainty

Consider the following economic situation. An agent wants to choose a decision
D to maximize the quadratic objective

—~E[D-Y]?

where Y is a real-valued random variable whose stochastic properties are known
to the decision maker. Suppose that initially the decision maker does not know
anything about the particular realization y of Y.

I now define a measure, called entropy, that quantifies the uncertainty in-
volved by not possessing information about the realizationsy of Y.” The entropy
H(Y) of a random variable Y is defined as®

H(Y) = - /R In(p(y))p(y)dy

This measure of uncertainty has two intuitively appealing properties” First,
entropy is equal to zero if and only if there is one realization that occurs with
probability one, i.e. in the absence of uncertainty. Otherwise, entropy is strictly
positive. Second, for a given bounded set of realizations entropy is maximal if all
the realizations occur with equal probability, which is the situation intuitively
corresponding to the situation of highest uncertainty.

4.2 Information Transmission via Communication Chan-
nels

I shall now assume that information about the realization y of Y can be trans-
mitted through a communication channel to the decision maker. The channel

"Defining uncertainty in terms of an entropy measure is just convenient and by no means
crucial for the discussion that follows.

8TFor y with p(y) = 0 let In(p(y))p(y) = 0 in the following definition.

9See Shannon (1948) for "hard’ properties that make this measure unique.



can be thought of a communication line connecting the information source with
the economic agent. The channel is fed with input signals which are delivered
at the other end of the line as output signals which are observed by the agent.
This setup could be interpreted literally in terms of a physical communication
channel, e.g. a telegraph line. Alternatively, and probably more relevant, the
channel may be interpreted as a model of the information flow from the outside
world into the mind of agents.

For illustrative purposes consider the following binary communication chan-
nel:'% suppose the channel is fed with zeros or ones as input signals and delivers
zeros and ones as outputs signals at the other end of the line. An important fea-
ture of the channel is that it is less than perfect in the sense that it occasionally
delivers a zero as output when a one has been entered as input or vice versa. Let
s €{0,1} and r € {0,1} denote the signal sent as input and received as output,
respectively. The structure of the noise in the channel can be described by a
non-degenerate conditional pdf n(s|r) that describes the likelihood of s having
been sent when r has been received.

Next, let the random variable S with pdf ¢(s) describe the likelihood with
which input s is sent at a particular point in time. The stochastic structure
of the channel inputs together with the noise structure n(-|-) define a random
variable R with pdf ¢(r) describing the channel outputs. Suppose we can observe
the channel output R and know the stochastic properties of the channel’s noise.
Then we can compute a measure of residual uncertainty about the channel input
S, which is called the conditional entropy of S after observing R. Formally,

1 1

fﬂﬂ3)=—§:[§:mW@TDMﬂO]ﬁﬂ (14)
r=0 [s=0

The conditional entropy averages the entropies for a given observation r, as

given by terms in the square brackets, weighting them with the likelihood of

observing 7.

In the absence of noise, i.e. if n(0/0) = n(1]1) = 1, the conditional entropy is
equal to zero indicating that there is no residual uncertainty about the channel
input after observing the channel output. Otherwise the conditional entropy is
positive indicating that residual uncertainty about the channel input still exists
due to the channel noise. Also, the conditional entropy can never be larger than
the unconditional one, which is intuitive because in the worst case the output
signals are completely uninformative about the input signals.

The reduction in entropy (or uncertainty) about the channel input from
observing the channel output is given by

H(S) - H(S|R) (15)

10The restriction to two signals is not crucial in any way. Alternatively, one could use as
many signals as there are letters in the alphabet, or even continous signal spaces, if seen as
limits of discretized signal spaces.



which is a positive number.

Clearly, the entropy reduction in (15) depends on the pdf ¢(s) of channel
inputs: The probability of observing a certain output signal ¢(r) in equation
(14), for example, depends on the probability ¢(s) with which the respective
inputs are sent. Therefore, expression (15) not only captures the properties of
the channel itself but also the properties of the signals that are sent.

One can now define a measure, called the channel capacity, which is inde-
pendent from the distribution of input signals. The channel capacity C' is the
maximum possible entropy reduction per sent input signal that can be achieved
via the channel where maximization occurs with respect to the pdf of the channel
inputs, i.e.

C= Stl[)) (H(S)— H(S|R))

Intuitively, one might think of the maximization operation as choosing that
probability distribution of input signals that optimally takes account of the
channel’s noise to maximize the reduction in entropy per sent channel input
signal. If the channel has a transmission rate of T" signals per period, then the
channel transmission capacity C'is given by

Cc=C-T
which is the maximum achievable entropy reduction per period.

Mathematical communication theory now establishes a link between the
channel transmission capacity C and the ability to transmit information about
the realizations of Y through the communication channel. The following results
are due to sections 13 and 24 in Shannon (1948):

There exists a coding system that maps realizations of Y into channel input
strings of zeros and ones of length ¢ such that the entropy reduction H(Y') —
H(Y|R) approaches C as t — 0o, where R denotes the observed channel output
string of length ¢. Moreover, there exists no coding system that achieves a higher
entropy reduction than C' for any t.

I now assume that the channel’s transmission rate T is large such that the
above limiting results provide reasonably good approximations to the problem.'!
The preceding results then imply that the channel’s transmission capacity C' is
a sufficient statistic of the channel, independent from the alphabet of available
input and output signals and the structure of the channel’s noise: The entropy
about Y can be at most reduced by at most C units via the channel.

1By letting T — oo I avoid issues that are related to the information delay caused by
coding systems that seek maximum entropy reduction. However, this feature of information
transmission is interesting in its own right and might be explored in another paper.



Now reconsider our original problem where the decision maker wishes to
max —E [D — Y]2
D
The results above imply that if the decision maker observes information about

the realizations of Y through a channel with transmission capacity C, then D
is constrained by

H(Y) - H(X|D) < C (16)

which says that the additional information about Y contained in D cannot
exceed C.

Suppose that
Y ~ N(0,07)
Then the entropy of Y is given by
1
HY)= B (In27e + In 0’5)

Appendix 8.2 shows that efficient use of the channel implies that observation
errors about Y are independent normal random variables, i.e. agents observe

y+o
where ¢ is normal with variance. Given this information agents optimally choose
D=y+¢
which implies that
Hﬁﬂ»:H@:%amM+mﬁ)
Constraint (16) then implies that
oF = ¢ 202 (17)

Equation (17) confirms the initial claim that communication channels generate
non-standard observation errors: the variance of the observation error depends
on the variance of the variable that agents want to observe where A = ¢=2¢ in
equation (13a).

As the channel capacity becomes infinite, observation errors disappear, in-
dicating that the channel transmits all available information; as the channel
capacity approaches zero, the variance of the observation errors become as large
as the variance of Y itself, which indicates that the channel transmits no infor-
mation about the realization of Y.

Equation (17) also reveals that there are decreasing returns to capacity: the
additional reduction in the variance of the observation error that can be achieved
by a marginal increase in capacity is a decreasing function of the existing channel
capacity. This is an important feature, which will be exploited below.



5 Optimal Policy with Communication Chan-
nels

This section considers the control problem when agents have to use an infor-
mation channel with fixed capacity C to obtain information about the current
state x; and the policy ;.

5.1 Optimal Use of the Channel by Private Agents

A first problem that has to be considered is how agents should split the available
capacity C to collect information about z; and ;.

Suppose that z; and i; are stationary processes. Furthermore, suppose that
optimal policy when agents use information channels remains to be of the form
(8). Obviously, this fact will have to be verified later on.

Using the law of motion (6) and the policy rule (8) both x; and i; can be
expressed as functions of current and past values of the shocks 7;:

ze =Y (b + baco)’ (bacy + )i (18)
=0
it =C1Mt + Co Z (bl + bQCO)i (b261 + ]-)77t—i—1 (19)
=0

This suggests that collecting information about x; and i; in each period is
equivalent to collecting information about the shock terms 7; in each period
and using this information to reconstruct the values of x; and ;.

Suppose for a moment that agents allocate each period all available capacity
to receiving information about the current shock 7. I will now discuss under
which conditions this is optimal.

First, consider the task of collecting information about x;. The stationarity
of x; implies that |b; 4+ bacy| < 1, which says that the influence of past shocks
1:—; on x; decreases with ¢. This coupled with the fact that there are decreas-
ing returns to capacity shows that agents have no incentive to allocate capacity
to observing past shocks if they have observed these with capacity C' in previ-
ous periods. Clearly, such a deviation would only increase the variance of the
observation error of x;.

Second, consider the task of collecting information about i;. Clearly, if
lea] = |eo (b2er + 1)) (20)

then the influence of the current shocks is larger than the influence of past shocks
and the allocation is equally optimal for ¢;. However, if inequality (20) does not

10



hold, then agents could be tempted to reallocate capacity from the current shock
to previous shocks, even if they have observed these with capacity C' in previous
periods.

We summarize the previous results in the following lemma:

Lemma 1 Suppose z; is a stationary process, optimal policy is of the form
(8), and inequality (20) holds. Then it is optimal for agents to use all available
capacity to observe the current shockn,. The variances of the observation errors
are then given by

T3y =€ 20 (21)

Ug(z) = 6_200'-2 (22)

K2

Equations (21) and (22) directly follow from equations (17), (18) and (19).

5.2 Optimal Policy

I now consider the implications of agents’ capacity allocations for optimal policy.
I first establish that the structure of the optimal policy reaction function remains
unchanged when information processing constraints are introduced:

Lemma 2 If x; is a stationary process and agents allocate all available capacity
to observe the current shock ng, then optimal policy is of the form (8).

Proof. When agents observe only current shocks lemma 1 establishes that
observation errors are given by equations (21) and (22). Substituting these
into the objective function (5) and exploiting the stationarity of x, the policy
maker’s maximization problem can be written as

max £ Zﬁt (—af =08 —me %0} - 7262C0§)]
t=0
= max F lz ﬂt (—(1 + ’726_20)%? — (0 + 716_2C)i?)] (23)
t=0

which is again a quadratic objective function. Thus, optimal policy continues
to be of the form (8), as claimed. m

Equation (23) implies that in a stationary equilibrium the policy maker’s
maximization problem can be written as

max (—o2 — v07) (24)
€0,C1
where
—2C
_Jotme (25)
1+ 7ype72¢

11



and where the states evolves according to (6).

The solution to (24) is given by equations (10) and (11) with vy substituted
by 7. To establish that this is indeed an equilibrium it remains to show that
the optimal reaction coefficients ¢y and ¢y satisfy inequality (20), which is a
sufficient condition for the optimality of the assumed capacity allocation by the
private sector. Appendix 8.4 shows that this is the case. We can summarize:

Proposition 3 There exists a stationary equilibrium where private agents use
all available capacity to observe current shocks, where optimal policy is of the
form (8), and where the optimal reaction coefficients are given by equations (10)
and (11) with o substituted by v, as defined in (25).

The only difference to a control problem without measurement error, as
given in (9), is that the weight o attached to the instrument is replaced by the
weight .

Whether v 2 9 depends on whether % 2 0. The fraction l; can be inter-
preted as the costs of observation errors of i; relative to the costs of observation
errors of x, while 7y denotes the direct utility costs of deviations of i; relative
to direct costs of deviations of x;. If

] > Y (26)

Y2
then v > 7 for any C' < oo, which indicates that the use of the policy in-
strument is more costly than it was in the absence of information processing
constraints. As information processing constraints disappear (C' — o0), the
weight v monotonically decreases towards «g. Correspondingly, if % < 70, then
v < 7o and the use of the policy instrument is less costly than in the absence of
information processing constraints.

The preceding results suggest that to characterize the effect of information
processing constraints on optimal policy it is sufficient to consider the derivatives
of the reaction coefficients with respect to the parameter . The next proposition
establishes how the optimal reaction coeflicients change in response to . The
proof can be found in Appendix 8.3.

Proposition 4 The absolute value of the optimal reaction coefficients ¢y and
c1 decrease with vy, i.e.

sz‘gn@—?) — sign(co)

szgn(%) = —sign(cy)

Oy

12



If inequality (26) holds, information processing constraints prompt policy to
react less aggressively than in the absence of these constraints. This is intuitive
because (26) implies that observation errors about the policy instrument are
relatively more important. To reduce these costs the policy maker reduces the
variance of the policy instrument and thereby increases the precision with which
agents can observe the instrument choice. Of course, this comes at the expense
of tolerating higher variability in the state variable.

If inequality (26) does not hold, then information processing constraints
cause policy to become more aggressive, i.e. to react stronger to past state
deviations and current shocks because observation errors about the state are
relatively more important. To reduce the observation errors about the state
variable the policy maker reduces the variance of the state variable by increasing
the variance of the policy instrument.

6 Optimal Policy with Heteroskedastic Shocks

This section considers a situation where heteroskedastic shocks hit the economy.

From the viewpoint of information theory this can be interpreted as there
being "busy’ times with lots of new information arriving and ’quite’ times with
little or no news. Such a situation is of interest because in quite times agents
have an incentive to allocate some of their capacity to past shocks to improve
information the previous busy times where they could not follow developments
very precisely.

As we shall see this provides an incentive for the policy maker to react with
a delay to the past news because as information about the past improves the
information costs of reacting to past news decrease.

I consider a simple situation, which allows for straight-forward analytical
solutions. First, suppose that past states have no influence on the present state
such that the aggregate law of motion is given by

Ty = baly + 1y (27)

Regarding the shock process I simply assume that with probability 1 — A a new
shock arrives and that with probability A the previous shock continues to be
effective, i.e.

1ny—1 with probability A
frd 2
i N(0, 77%=7) with probability 1 — A
This implies that in periods in which the previous shock continues to be effective,
agents optimally use all available capacity to obtain more accurate information
about the old shock.

As a consequence the simple setup is that there are no intertemporal linkages
between periods except for the information collection process of private agents.

13



Figure 1: Optimal policy without information constraints

Figure 2: Sluggish and overshooting optimal policies with information con-
straints

14



Therefore, we can think of the policy maker’s maximization problem in terms
of separate maximization problems: one problem for periods in which a shock
arrived, another one for periods in which a shock arrived one period ago, and so
on. Clearly, in the absence of an impact of past states on the current state the
policy maker has no incentive to react to past states, which implies that ¢ = 0
in (8).

Consider a period in which the current shock is effective since n > 1 periods.
Agents already gathered information about this shock in the previous n — 1
periods and can use the information capacity that is available in the current
period to further reduce the observation error. It is easy to show that collecting
for n periods information with capacity C' about the same random variable is
identical to collecting for one period with capacity nC.

As a result, optimal policy in a period when the current shock is effective
since n periods can be calculated by maximizing

—z} —y(n)i;
where

Yo + Y1~ ¢
(n) =

1+ 726—2710

Consider the case % > 79 where the initial policy reaction to a shock is
weaker than in the absence of information processing constraints. Clearly, as n
increases «y(n) will approach ~y. This implies that the policy maker’s reaction
to the shock becomes stronger over time since improved information about the
value of the shock reduces the costs associated with observation errors. Figure 2
illustrates a sluggish policy adjustment path for a shock that hits the economy
in period 1 and that remains to be effective for the 7 periods. This should
be confronted with figure 1 which shows the optimal policy adjustment in the
absence of information processing constraints.

For the case % < 7 the initial policy reaction is stronger than in the absence
of information processing constraints because information costs about the new
state are relatively more important. Since y(n) again approaches vy over time,
this implies that there is an initial overshooting reaction in optimal policy, see
figure 2 for an illustration.

7 Conclusions

This paper presents a first assessment of the impact of information processing
constraints on optimal policy. Clearly, many open questions remain: What hap-
pens if agents face a trade-off between speed and accuracy of information trans-
mission? What happens if the policy maker is subjected to similar information
processing constraints as the private sector? What happens if the private sector
has to take decisions that depend on both the state and the policy variable?
Future research will have to explore these questions.
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8 Appendix
8.1 Appendix 1

Agents in the private sector have the following utility function

o

max 2 BU(dy s, dayg, iy, )

The one period utility function U is assumed to be twice continuously differen-
tiable and convex in (dj ¢, ds ) for all (¢, 2). When the following second partial
derivatives are equal to zero!2

Ud13:' - Udzi - Ud1d2 - Uza: = 0 (28)
optimal decisions can be expressed as
di = f(it)
dot = g(x¢)

Moreover, normalize & and ¢ such that the one period utility

U (f(ie), g(0),it, 241)

is maximized for iy = x; = 0. Letting §; and 6, denote mean zero observation
errors a second-order Taylor approximation to the utility function aroundi; =
x; = 6; = 6, = 0 is given by

E [U(f(lt + 61)’ g(xt + 5$)7 ita mt) - U(f(0)7g(0)a 07 Oﬂ
~Visioim U E[(65,000,2)] + B [(@, 8ayiy ) Vi, 8
= Upoj + Uit} + Us,s, E [67] + Us,s, E [62]

U (81827 2) |

I’z7x

where all first order terms are zero because the expected observation errors are
zero and because of the normalization of x and 7. Second order terms disappear
because observation errors are independent from each other and from x and
and because of the assumptions in (28). Normalization of the utility function
delivers (2) when substituting d; ; and d2; by (4) and (3).

8.2 Appendix 2
Consider the problem

max —E [D — Y]?

12 An example where this is the case is given by

U(di,t,da,t,%t, ) = u(di,¢, %) + v(dae, ©t)
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subject to
HY)-H(Y|D)<C

Letting 02, 02. denote the variances of D and Y, respectively, and opy their
covariance, one can express this problem as

min —o% + 20py — 0%
0'2 0'2
DY DY

s.t.

H(Y) - /D H(Y|D=A)p(A)dA < C (29)

Now fix some choices for 0%, and 0%,-. Then one can show that the functional
form of the pdf p(Y|D = A) that maximizes the entropy H(Y|D = A) is a
normal distribution, see Shannon (1948) section 20. Thus, by choosingY'|D = A
normal for each A, the left-hand side of (29) is minimized and the constraint
relaxed as much as possible.

The entropy of the normal variable Y|D = A with variance a?,l DA 18 given
by

HY|D=A)= (1n27r€ + 1110?/\D:A)

N —

and maximizing

H(Y|D) = %/

(m 2me + In o—alD:A) p(A)d(A)
D

subject to

o2 :/Dgf,lD:Ap(A)dA—i-/D(MmD:A—MY)P(A)dA

delivers that for any choice of the conditional means uy|p one should choose
032,| pna independent from A. If Y is normal then this implies that we can
choose D to be jointly normal with Y. This implies that D has a representation
as

D=X+¢
where 6 is a normal random variable, which is independent of X, as claimed.

8.3 Appendix 3

I first calculate the signs of the coefficients ¢y and ¢;. Recall the optimal reaction
coefficient ¢q in (10) and the definition of 7 given in (12). Since

(=yb7 +v+b5—/T) <0
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it follows that the sign of ¢ is given by
sign(co) = sign(—b1bz) (30)

Next, recall the optimal reaction coefficient ¢; in (11). If v6% — v — b3 > 0 then
(11) and (30) imply
sign(ci) = sign(—bz) (31)

Now, suppose 7b% — v —b3 < 0. Substituting c by (10) in the numerator of (11)
delivers the following expression for the numerator

1
Q’Ybl b2

[(=b% + 7+ b3 — V/T) (701 — v — b3) — 4yb7b3]

I will now show that the terms in the square brackets above are smaller than
zero, which establishes that also for this case the sign of ¢; is given by (31):

(=907 + 7+ b3 — V7) (0] — v — b3) — 49b3b3 < 0
— (7b%+7+b§)2+472b%—\/7_'(7b% —v—bg) <0&
VT (=T = (W =~ —13)) <0 &
—/T - ('ybf—v—b%) <0&
Since both — (Vb% e b%) > 0, this is equivalent to
—(’yb%—’y—b%) <Té&
0 < 4yb3b3

For the borderline cases v = 0 it is ¢; = —é, similarly for by = 0 we have
= —3% such that also in these case (31) holds.
2

Next, I calculate the sign of the derivatives of ¢y and ¢; with respect to 7.
Taking the derivative of ¢y delivers

dco _byy+bi+08— V7
8fyib1 2\/7_")/2

Since
YA b3 — /T >0

it follows that

Sign(%—:)) = sign(—b1b2) = sign(—co)

Next, take the derivative of ¢; with respect to ~:
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oy

_ 2 2 27272
dor _ ((\/F (V02 +y+03)) T+ b1b2> (32)

3
R

Now consider the first bracket in the numerator above. Using a first order Taylor
approximation to the root and exploiting its concavity one gets

(VT — (i +v+103)) = \/(vb? o+ 53)° — 49203 — (7 +y + B3)
2
(Y01 + 7+ b3)
Using this expression, a sufficient condition for the numerator in (32) to be
negative is given by
272
(701 JQj’vbi B vt <0

Multiplying by (y6% + v + b3), substituting the expression for 7, and collecting
terms delivers

—2v'g3 (g — 297 + 1) — 37°g7 95 — v*g195 — 37°g1g5 <0

Since (9§ — 2¢g? + 1) > 0, the previous inequality is satisfied, which shows that
the numerator in (32) is negative. Equation (32) then implies

szgn(%—?) = sign(be) = sign(—cy)

8.4 Appendix 4
We want to show that
2 — (co(byer + 1)) >0 (33)
Using the expressions for reaction coefficients in (10) and (11), one obtains
el = (co(baer +1))?
1—gom+ (V208 — %) 7 — 29937 + V7 (957 + 97 — v9793 (7 + 191 + 63))

2 v4g%g3

(34)
where 7 is given by (12). Equation (34) is larger than zero if and only if
(93 +7) 7+ (=95 + %01 —7* = 2793) VT + —gig3(y + 797 +93) = 0

which is obtained by dividing the numerator in (34) by /7 > 0. Using (12) to
substitute 7, this is equivalent to

0 < g5+ 3v93 + 79391 +37°95 — V9595 + 7’91 (35)
— 2930} + 3 + (=95 + 7’05 —7* — 2v93) VT (36)

Now consider two cases:
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e Case A: (—g§1 + 729% - 72 - 2793) >0
e Case B: (—g3 +72g7 —7* — 2vg3) <0

First, consider case A. Using /7 > g3, a sufficient condition for (35) to hold
is given by

v95(L+g7) + 29295 +¥* (g1 — 297 +1) > 0

Since(g} — 2g? + 1) > 0, equation (35) and, therefore, equation (33) holds in
this case.
Next, consider case B. Rewrite (35) as

— g5(—g5 + 7291 —¥* — 2793) + 27795 + 795 + 19595 + V2 (g1 — 2957 + 1)
(37)
> — (=g +791 =7 — 2vg3) VT (38)

Clearly, both sides of equation (37) are positive. Now divide equation (37) by
- (—gé1 +7%g7 — 7% — 2’yg§) > 0 and square the result:

2 2 2
Y97 — Y — 93 )>T

2 2 2 2
Y91+ +92 =277
( ' ? Y93 +7297 — 12— 243

Using the definition of 7 in (12) this can be shown to be equivalent to

4
9o <0
2 —
(=95 +7%91 — 72 — 2793)

—dyig}

which is satisfied. Thus, also in this case equations (35) and (33) hold.
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